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Graph Neural Networks (GNNs)
• Can efficiently learn graph-based data G=(V, E): 

• V - Nodes 

• E - Typed, directed, edges 

• Useful for learning social networks, knowledge graphs, product recommendation, programs 

• Very general - can encode any data that can be represented as a graph
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A GNN as a Message Passing Network [Gilmer, ICML’2017]
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• Initial representations are embeddings or features 

• At every message passing step (=layer): 

• Every node computes a message and sends it to its neighbors 

• Every node updates its representation based on its received 
messages and its own previous representation
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A GNN as a Message Passing Network [Gilmer, ICML’2017]
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• Initial representations are embeddings or features 

• At every message passing step (=layer): 

• Every node computes a message and sends it to its neighbors 

• Every node updates its representation based on its received 
messages and its own previous representation



A GNN as a Message Passing Network [Gilmer, ICML’2017]
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• Given                              : 

• Node classification, graph classification, link prediction, sequence generation
{h(K )

u ∣ u ∈ V}
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• Initial representations are embeddings or features 

• At every message passing step (=layer): 

• Every node computes a message and sends it to its neighbors 

• Every node updates its representation based on its received 
messages and its own previous representation



What are graph neural networks good for?

• GNNs are good for short-range tasks: 

• Paper subject classification (Cora/Citeseer/Pubmed, Sen et al., 2008) 

• Friendship/collaboration prediction (Open Graph Benchmark, Hu et al. 2020): 

• This work: but not that good for long-range tasks — tasks that require many 
message-passing steps (~4+)
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Very local property,  

requires only 2-3 message-passing steps?
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The NeighborsMatch problem

• Assume that we wish to predict a label for the target node 

• The correct label is the label of the green node that has the same number of blue 
neighbors as the target node, in the same graph 

• In this example — C

C

B

A

?
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The GNN Bottleneck
From the perspective of the target node, the rest of the graph may look like a tree, where the target node 
itself is the root 

We need:        

In this case, we need at least 4 GNN layers for the information to reach the target node 

However, the receptive field of the target node grows exponentially with the number of layers

K > distance (C, target)

CBA D GFE H

?
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t=0t=1t=2t=3t=4
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To flow a message to a distance of 4, we need to squash                       messages into a single node 
representation (the representation of the target node).  

An exponential amount of information is squashed into a fixed-size vector.

Over-squashing

Bottleneck

O (degree4)
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Bottleneck + over-squashing



Over-squashing prevents GNNs from fitting the training data

• At depth=4, some GNNs cannot even reach 100% training accuracy 

• (In the paper:) combinatorially, to fit the dataset, the dimension     must satisfy:    

• Such that there will be enough bits to express all different training examples 

• Otherwise, pigeonhole principle: some different examples will result in the same 
vector representation.
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Different GNNs are affected by the bottleneck differently

• GCN and GIN suffer from over-squashing 

more than GAT and GGNN.  

• GCN 

• GIN 

• GAT 

• GGNN       

More - in the paper…
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Does the bottleneck affect real-life models?

• Off-the-shelf, state-of-the-art models, trained by others 

• To break the bottleneck: 

• We (modified the original implementations and) made the last GNN layer fully-adjacent (FA) - every 
node has an edge to every other node 

• Re-trained without adding weights, without any hyperparameter tuning 

• The most trivial idea, just to show that the bottleneck affects SoTA models

12t=0 t=1 t=K

…

Fully-adjacent (FA) layer



QM9 Dataset (molecules regression) 
(mean absolute error, lower = better)
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Biological Datasets 
(accuracy, higher = better)
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Summary

• To pass long-range messages - we need many GNN layers  

• A node’s receptive field grows exponentially with the number of layers 

➡ Leads to a bottleneck and over-squashing 

• GCN and GIN suffer from over-squashing more than others 

• SoTA models can be improved by simply considering the bottleneck 

• Still looking for better solutions
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