Contextual Speech Recognition with Difficult Negative Training Examples

Uri Alon, Golan Pundak, Tara N. Sainath

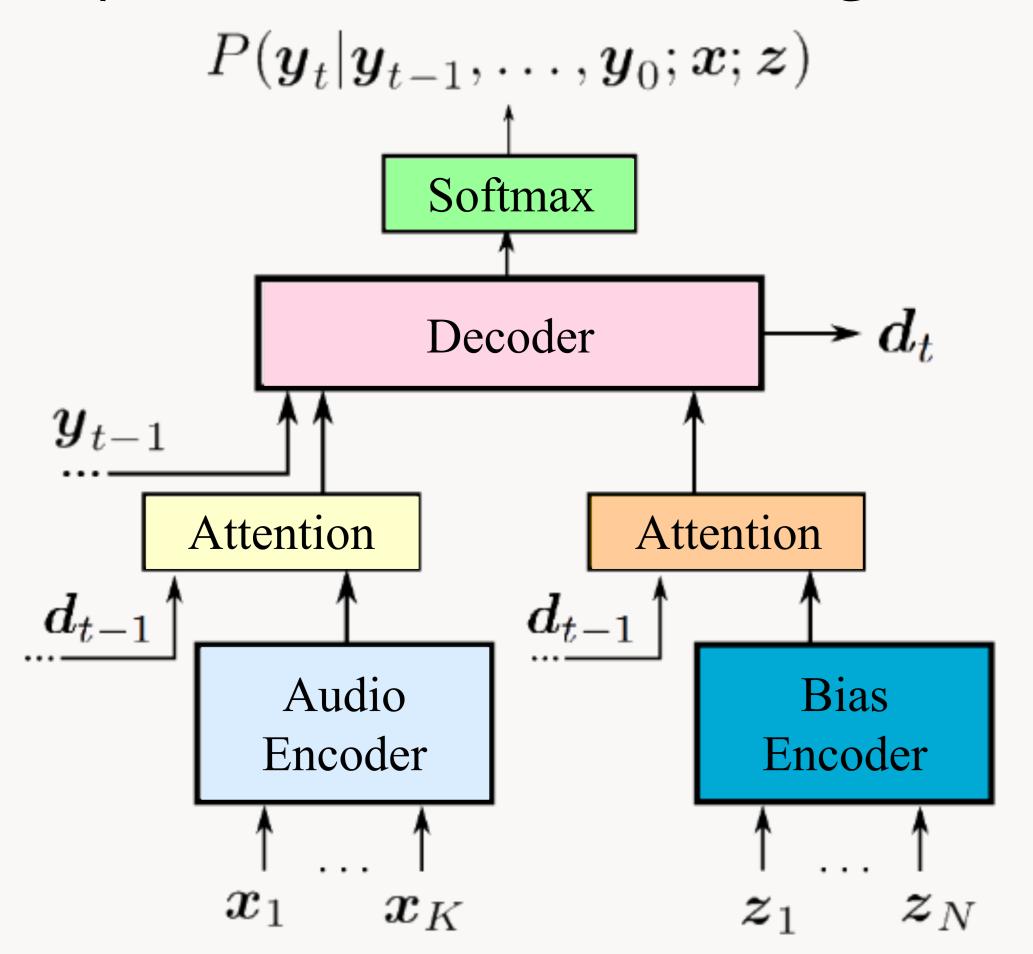
urialon@cs.technion.ac.il {golan,tsainath}@google.com

1. Task: Contextualized ASR

- Context provided in addition to audio can help reduce WER significantly.
- Such user-specific contextual information can include:
- The user's list of songs
- The user's contact list
- The currently installed apps
- Proper nouns are very frequent in various ASR tasks:
- "Call Joan's mobile"
- "Play Taylor Swift"
- "How tall is *LeBron James*?"
- But contextual ASR models usually perform poorly on rare words and especially on proper nouns (NNPs).

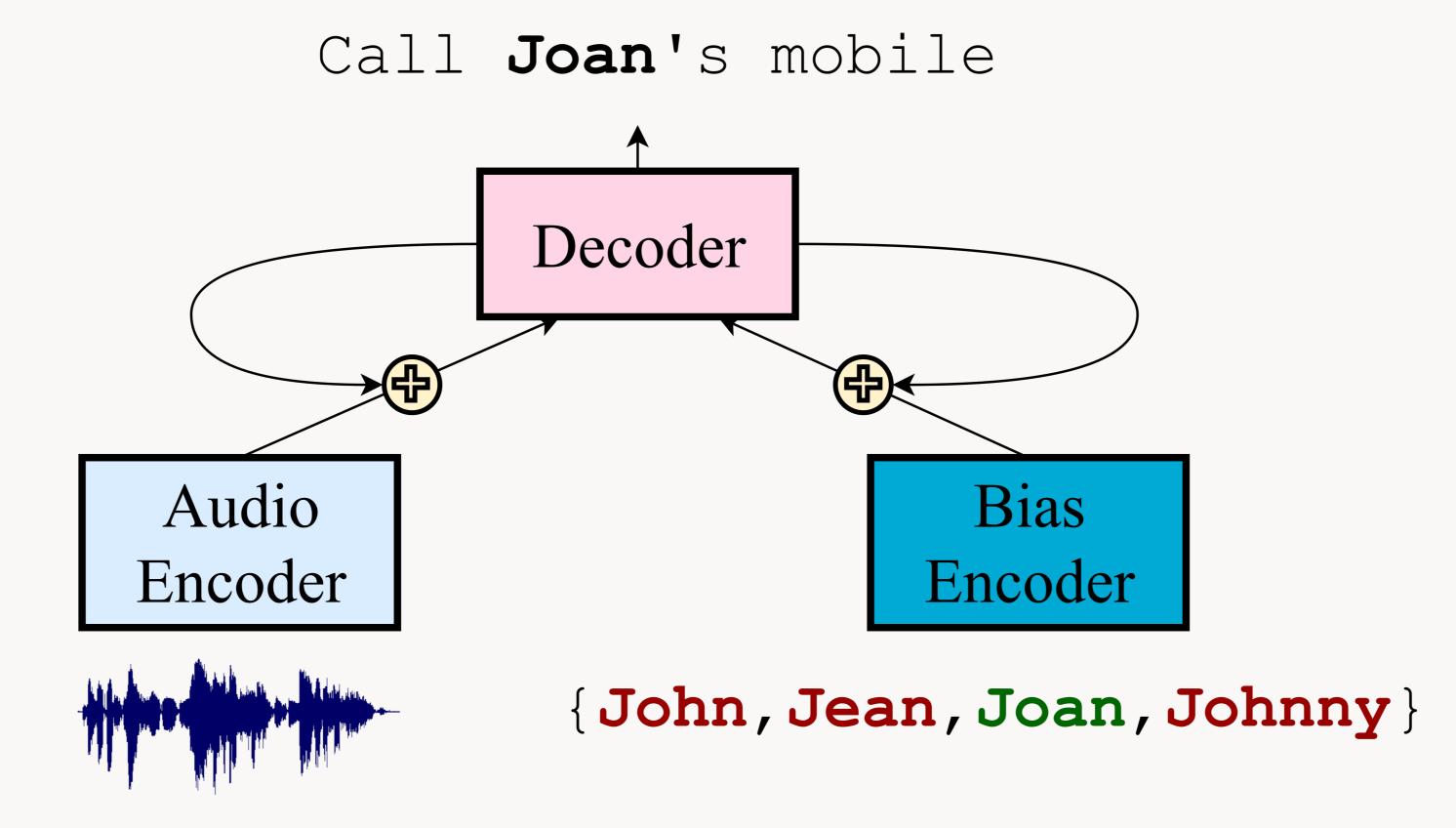
2. The Contextualized LAS (CLAS) Model (Pundak et al., SLT'2018)

- CLAS is an E2E ASR model based on the Listen-Attend-and-Spell (LAS) encoder-decoder architecture.
- The key difference from LAS: biasing sub-module.



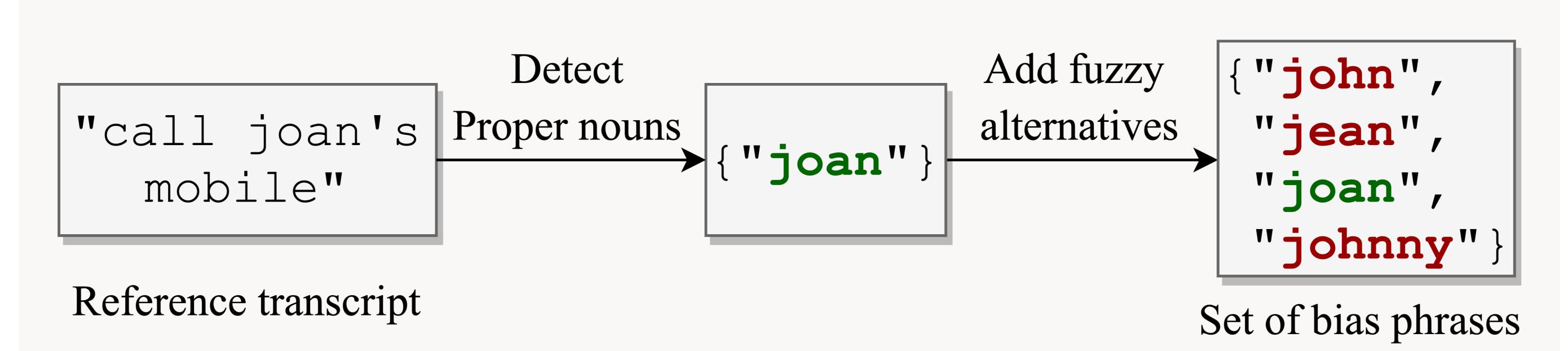
3. The Problem: The Network Fails to Distinguish Between Phonetically Similar Phrases

- Disambiguation of similarly sounding phrases is challenging.
- The network makes even more mistakes as the set of bias phrases becomes larger.



4. Training with Difficult Negative Examples

- During training, we provide the network with phonetically similar proper nouns (NNPs) as the "distractors".
- This way, we encourage the network to:
 - Distinguish between similarly sounding phrases
- Learn more discriminative representations.



Originally, CLAS was trained with random n-grams as the "distractors".

5. Evaluation

We experimented with the following training schemes:

	Vanilla CLAS	CLAS+NNP	CLAS+fuzzy	CLAS NNP+fuzzy
Bias Phrases Selection	Random	NNPs from reference	Random n-grams from reference	NNPs from reference
Distractors Selection	Random	Random NNPs	Fuzzy alternatives	Fuzzy alternatives

Results:

Test Set	Vanilla CLAS	CLAS+NNP	CLAS+fuzzy	CLAS NNP+fuzzy
Songs	9.8	6.7 (31.6%)	10.4	5.4 (44.9%)
Contacts	11.3	6.1 (46.0%)		5.3 (53.1%)
Talk-To	15.2	14.8 (2.6%)	11.1 (27.0%)	11.3 (25.7%)

Table: WER of the compared training schemes. In parentheses: the relative improvement over Vanilla CLAS.

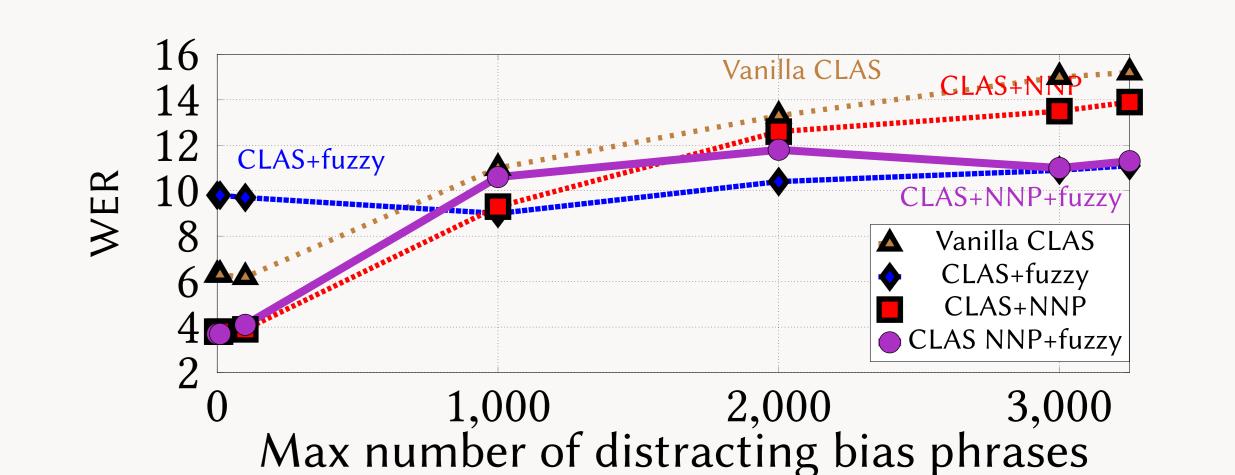


Figure: CLAS NNP+fuzzy achieves the lowest WER with a small set of bias phrases, and almost the lowest WER when presented with 3255 bias phrases.

6. Qualitative Analysis

True ref: creepy carrots</br>

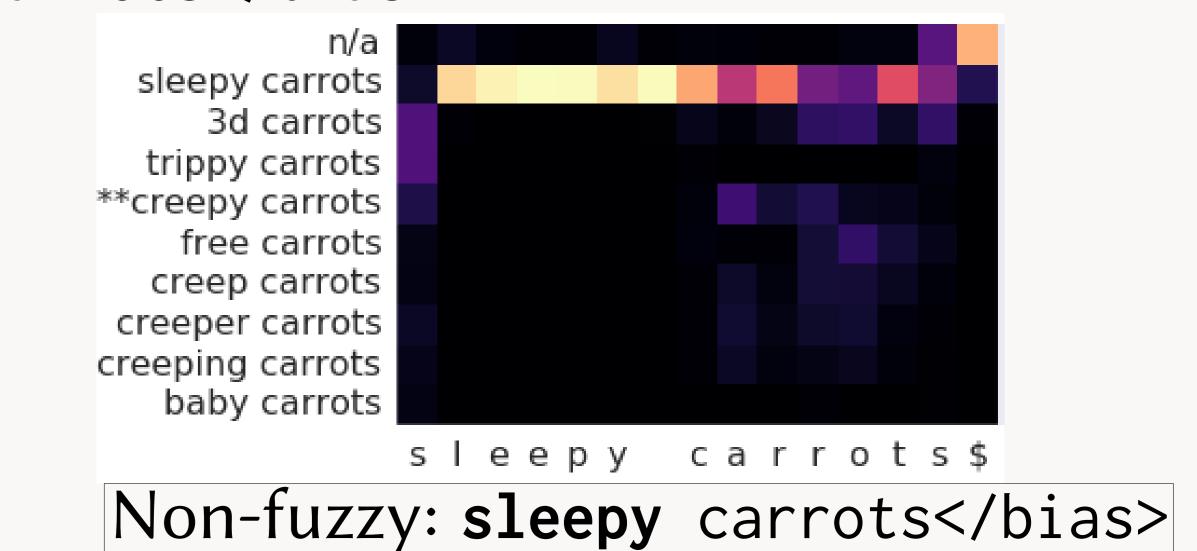


Figure: The fuzzy model attends mostly to "creepy carrots" and makes a correct prediction, while the non-fuzzy model attends to "sleepy carrots" and predicts the wrong word "sleepy".

References

- Uri Alon, Golan Pundak, and Tara N Sainath. Contextual speech recognition with difficult negative training examples. In ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 6440-6444. IEEE, 2019.
- [2] Golan Pundak, Tara N Sainath, Rohit Prabhavalkar, Anjuli Kannan, and Ding Zhao. Deep context: end-to-end contextual speech recognition. In 2018 IEEE Spoken Language Technology Workshop (SLT), pp. 418–425. IEEE, 2018.