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Abstract

Over the past decade, the deep learning revolution, driven by artificial neural networks,
has transformed a broad range of areas in computer science such as computer vision,
speech recognition, and natural language processing (NLP). In parallel, the number of
open-source, publicly available codebases has grown dramatically, enabling the appli-
cation of neural networks to a wide range of programming-related tasks, a field that
we dub Programming Language Processing (PLP).

Yet, the problem of representing programs in machine- and deep-learning models
remained an open question. Obviously, programs do not have a straightforward tenso-
rial representation as images do. Although a program can be represented as a sequence
of tokens like a natural language text, programs are far more structured than free-text,
since programs must comply with a rigid and rich syntax, defined by a context-free
grammar. Furthermore, every programming language has predefined semantics that
describe what syntactically valid programs mean and do.

This dissertation focuses on this general problem: representing programs in machine-
and deep-learning models, in ways that facilitate learning while capturing as much
information as possible, and keeping the model as general as possible. This thesis
introduces the AST paths approach, which represents programs using paths from the
program’s Abstract Syntax Tree (AST). The AST paths representation allows build-
ing powerful and accurate neural models, while keeping them lightweight and scalable.
Specifically, this thesis shows how these models can be trained on millions of examples,
in tasks that include predicting properties of individual program elements, predicting
properties of code snippets, generating a natural language sequence from a given source
code snippet, and generating code completions. These models were publicly released as
online interactive demos along with open-source implementations and datasets. Some
of the models, such as code2vec and code2seq, are highly popular and widely used in
academia and industry.

Finally, this dissertation studies theoretical differences between different program
representations. These studies revealed broader foundational limitations of another
popular representation, the graph neural network framework.
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Chapter 1

Introduction

The past decade has seen monumental advances in machine learning. Specifically,
deep learning, powered by artificial neural networks, has transformed a broad range
of areas in computer science such as computer vision (Krizhevsky et al., 2012), speech
recognition (Hinton et al., 2012), and natural language processing (NLP) (Collobert
et al., 2011), and has spread to a variety of other scientific disciplines such as biology
(Angermueller et al., 2016), chemistry (Gilmer et al., 2017), and physical simulation
(Sanchez-Gonzalez et al., 2020). In parallel, despite great popularity of rule-based (i.e.,
deterministic, non-learning) coding assistance tools, the vast majority of programming,
fixing, naming, and debugging efforts are still performed by human programmers. Pro-
gramming requires expertise and is time-consuming; further, even expert programmers
lookup for online help frequently, and still create bugs. Thus, the dramatically grow-
ing availability of open-source code repositories creates exciting new opportunities for
employing deep learning for a wide range of programming-related applications, a field
that we dub Programming Language Processing (PLP).

Nonetheless, before even considering the actual learning algorithm or model, rep-
resenting programs in machine- and deep-learning models remained an open problem.
That is, it is unclear which facets of programs capture the most information about
the program, while remaining compact and generalizable. Further, it is unclear how
to input these facets into a learning algorithm. While an image can be represented as
a matrix or a tensor of pixels, and a natural language sentence can be represented as
a one-dimensional sequence of words, it is unclear whether programs can be described
using such simple input representations. Although a program can be represented as a
sequence of tokens like natural language text, programs are far more structured than
free-text, since a (valid) program must comply with a rigid and rich syntax, defined by
a context-free grammar. Thus, a program may only look like text, where in fact, it is
more of a tree than a sequence. Further, every programming language has predefined
semantics that describe what syntactically valid programs mean and do. So, providing
the learning model with some information about the semantics of the language, along
with the program itself, might help the model in performing some tasks. However,
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excessive dependence on semantics restricts the scalability of the learning models, lim-
its the feasible amount of training data, and hurts the practical applicability of such
models.

Thus, the main question investigated in this thesis is:

How can we represent programs in learning models
to achieve accurate, computationally effective, and large-scale models?

Figure 1.1 shows an illustrative demonstration of some of the models presented in
this thesis.

Research impact In this thesis, we present a line of work that began as a contribu-
tion in the field of programming languages, but quickly drew attention and impacted
a variety of other fields such as software engineering (Henkel et al., 2018; Cambronero
et al., 2019; Liu et al., 2019b; Kang et al., 2019), machine learning (Zügner et al., 2021;
Yao et al., 2021; Fernandes et al., 2019; Liu et al., 2021), NLP (Feng et al., 2020; Fujita
et al., 2020; Panthaplackel et al., 2020; Yu et al., 2020) and security (Schuster et al.,
2021; Sonnekalb, 2019; Compton et al., 2020; Lacomis et al., 2019). Further, our in-
tuitions from structural representations of code have led to identifying general insights
that drew attention in the general geometric deep learning community (Valsesia et al.,
2021; Bronstein et al., 2021; Morris et al., 2021; Kurin et al., 2021; Lukovnikov and
Fischer, 2021; Kreuzer et al., 2021; Godwin et al., 2021). Our code and online demos
are used by thousands of people and draw positive feedback and enthusiastic response.

Code completion (Chapter 5)

Code captioning/documentation (Chapter 4)

Variable name
prediction (Chapter 2)

Method name
prediction (Chapter 3)

Figure 1.1: An illustration demonstration of some of the models presented in this thesis.
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1.1 Background

Representing programs in machine- and deep-learning models has always been an open
problem. Here we discuss the main existing approaches.

Sequential representation of code A direct approach is to frame the representa-
tion problem of code as text, or a sequence of tokens. Several works have taken this
approach and modeled code as a sequence. These sequences could be of tokens (Allama-
nis et al., 2014; Allamanis and Sutton, 2013; Allamanis et al., 2016; Movshovitz-Attias
and Cohen, 2013; White et al., 2015; Hindle et al., 2012; Iyer et al., 2016; Allama-
nis et al., 2016; Loyola et al., 2017; Pradel and Sen, 2018; Vasic et al., 2019; Kanade
et al., 2020), and also characters (Bielik et al., 2017) and API calls (Raychev et al.,
2014). This straightforward approach allows employing off-the-shelf approaches and
architectures from NLP. While sometimes obtaining satisfying results, these models
treat code as a sequence rather than a tree. This necessitates implicit re-learning of the
(predefined) syntax of the programming language, often requiring large models, large
amounts of data, and very long training times.

Semantic representations of code On the other extreme, semantic representations
of code are appealing because they allow providing the learning model with all the
knowledge that is already “known”, preserving the model’s learning capacity. Such
semantic representations usually represent the code as a (neural or non-neural) graph.
Nodes are program elements, and edges represent syntactic and semantic relations
between the elements (Allamanis et al., 2018; Brockschmidt et al., 2019; Hellendoorn
et al., 2019; Guo et al., 2021; Peng et al., 2021) or other manually designed features
(Raychev et al., 2015; Dinella et al., 2020; Zügner et al., 2021). Although this semantic
information can significantly ease learning, it also adds dependence on this information,
which is not always given. For example, Brockschmidt et al. (2019) compile all training
code projects before training, to provide the learning phase with information about
types. This severely limits the model to perform inference only for complete projects
that actually compile: if a project from the test-set does not compile, or we wish
to perform inference on a partial code snippet (without its surrounding code, files,
and dependencies) – the ability of the model to provide useful predictions is acutely
hurt. Further, depending on semantics makes the model language- and task-specific:
extending such a model to a different prediction task requires rethinking of the needed
semantic relations and features. Extending such a model to a different programming
language requires re-designing the semantic analysis, which is not always possible due
to the nature of different languages. For example, extending a semantic model that
was designed for Java to a language such as Python may not be able to use the same
amount of semantic information, due to the static typing of Java and the dynamic
typing of Python.
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Learning
Effort

Analysis
EffortSurface text

(token stream)
AST
Paths

Data flow
Analysis

Control flow
Analysis

Handcrafted
features

...

Model size, 
training time,

amount of data...

Implicitly re-learn syntactic 
and semantic regularities

language-specific,
task-specific, model

Figure 1.2: An abstract illustration of the tradeoff between the learning effort (the effort
that is put on the learning model) and the analysis effort (that is made before learning).
Learning from the surface text is straightforward and allows employing existing textual
approaches, but puts much effort on the learning model. Manually designed features
and semantic analysis reduce the learning effort, but make the model language- and
task-specific.

1.1.1 AST paths

A useful and interesting sweet-spot between the sequential and the semantic represen-
tations, which is one of the main topics of this dissertation, is AST paths representation.
AST paths represent programs as paths between nodes in the program’s Abstract Syn-
tax Tree (AST). These paths can be thought of as “structural n-grams”, which make
this approach general and simple. The use of syntax reduces much of the learning effort
from AST paths-based models compared to sequential models, because the model does
not need to waste capacity by learning that “an opening parenthesis must be followed
by a closing parenthesis”, for example. Compared to semantic models, AST paths are
much more general, because the same model and approach can be used for different
tasks and languages, while only replacing the parser.

Figure 1.2 summarizes the tradeoff discussed above between the learning effort and
the generalization limitation. In the following chapters, we show the applicability and
generality of the AST paths approach. We note that there are other works that follow
the purely-syntactic approach (Allamanis and Sutton, 2014; Bielik et al., 2016; Yin
and Neubig, 2017; Rabinovich et al., 2017; Yin et al., 2019; Yin and Neubig, 2018; Yao
et al., 2021; Kim et al., 2021). Some of these will be discussed where relevant; others
use GNN to encode the AST, and are thus susceptible to the GNN bottleneck that we
present in Chapter 6.
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Figure 1.3: A screenshot of the code2vec website: http://code2vec.org. A user-
provided code snippet is fed into the model, which predicts an appropriate label (a
method name of sort, in this case). The website also shows the paths that were given
the highest attention in the prediction.

1.2 Overview

Next, we give a brief overview of some of the main methods presented in this thesis.
The exact details and formal definitions are provided in the respective chapters.

code2vec In Chapter 3, we present a neural model for representing snippets of code
as continuous distributed vectors (“code embeddings”). The main idea is to represent a
code snippet as a single fixed-length code vector, which can be used to predict semantic
properties of the snippet. To this end, code is first decomposed to a collection of paths
in its AST. Then, the network learns the atomic representation of each path while
simultaneously learning how to aggregate a set of them.

We demonstrate the effectiveness of our approach by using it to predict a method’s
name from the vector representation of its body. We evaluate our approach by training
a model on a dataset of 12M methods. We show that code vectors trained on this
dataset can predict method names from files that were unobserved during training.
Furthermore, we show that our model learns useful method name vectors that capture
semantic similarities, combinations, and analogies. Figure 1.3 shows a screenshot of
our online demo (http://code2vec.org).

code2seq The ability to generate natural language sequences from source code snip-
pets has a variety of applications such as code summarization, documentation, and
retrieval. Sequence-to-sequence (seq2seq) models, adopted from neural machine trans-
lation (NMT), have achieved state-of-the-art performance on these tasks by treating
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Figure 1.4: A screenshot of the code2seq website: http://code2seq.org. A user-
provided code snippet is fed into the model, which predicts an appropriate natural
language sequence: “save bitmap to file”. The tree on the right illustrates the paths
that were given the highest attention while predicting each of the output words.

source code as a sequence of tokens. In Chapter 4, we present code2seq: an alterna-
tive approach that leverages the syntactic structure of programming languages to better
encode source code. Our model represents a code snippet as the set of compositional
paths in its AST and uses attention to select the relevant paths while decoding.

We demonstrate the effectiveness of our approach for two tasks, two programming
languages, and four datasets of up to 16M examples. Our model significantly outper-
forms previous models that were specifically designed for programming languages, as
well as state-of-the-art NMT models. Figure 1.4 shows a screenshot of our online demo
(http://code2seq.org).

SLM In Chapter 5, we address the problem of any-code completion – generating a
missing piece of source code in a given program without any restriction on the vocabu-
lary or structure. We introduce a new approach to any-code completion that leverages
the strict syntax of programming languages to model a code snippet as a tree – struc-
tural language modeling (SLM). SLM estimates the probability of the program’s ab-
stract syntax tree (AST) by decomposing it into a product of conditional probabilities
over its nodes. We present a neural model that computes these conditional probabili-
ties by considering all AST paths leading to a target node. Unlike previous techniques
that have severely restricted the kinds of expressions that can be generated in this
task, our approach can generate arbitrary code in any programming language. Our
model significantly outperforms both seq2seq and a variety of structured approaches
in generating Java and C# code. Figure 1.5 shows a screenshot of our online demo
(http://AnyCodeGen.org).
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Figure 1.5: A screenshot of the AnyCodeGen website: http://AnyCodeGen.org. A
partial user-provided code snippet is fed into the model, with one or more “holes”,
marked by “??”. The model generates a completion for every “hole”, such as
stats[i].getPath(). The website also shows the predicted partial AST of each of
the suggested completions.

The bottleneck of graph neural networks While studying different represen-
tations of code, we noticed that graph neural networks, although very general and
versatile, fail to learn long-range patterns in the training data. When trained on pro-
gramming tasks that depend on long-range interactions, we found that GNNs usually
overfit on short-range artifacts in the data. This phenomenon was surprising, because
AST paths had no problem learning long-range signals. Searching through the litera-
ture, it turned out that since the proposal of the GNNs (Gori et al., 2005; Scarselli et al.,
2008), their struggle to propagate information between distant nodes in the graph was
one of the major problems in training them. In Section 6.1 we propose a new explana-
tion for this problem: GNNs are susceptible to a bottleneck when aggregating messages
across a long path. This bottleneck causes the over-squashing of exponentially grow-
ing information into fixed-size vectors. As a result, GNNs fail to propagate messages
originating from distant nodes and perform poorly when the prediction task depends
on long-range interaction. In Section 6.1, we highlight the inherent problem of over-
squashing in GNNs: we demonstrate that the bottleneck hinders popular GNNs from
fitting long-range signals in the training data; we further show that GNNs that absorb
incoming edges equally, such as GCN and GIN, are more susceptible to over-squashing
than GAT and GGNN; finally, we show that prior work, which extensively tuned GNN
models of long-range problems, suffer from over-squashing, and that breaking the bot-
tleneck improves their state-of-the-art results without any tuning or additional weights.
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Aspect Instantiation in this thesis

Code
representation

AST paths Chapter 2
code2vec Chapter 3
Structural language models Chapter 5

Application

code2seq Chapter 4
Adversarial examples for models of code Section 7.2
Edit completion Section 7.1
Reverse engineering using neural networks David et al. (2020)

Foundations
and theory

The GNN bottleneck Section 6.1
Expressiveness of graph attention networks Section 6.2

Table 1.1: Aspects of programming language processing we discuss in this thesis.

1.2.1 Contributions

To summarize, the main contributions of this thesis are:

• A new general and language-agnostic family of representations for program ele-
ments in machine learning models: AST paths (Chapter 2).

• An approach for embedding an entire code snippet as a vector, based on its bag
of AST paths. We demonstrate this approach in a large-scale neural model that
predicts a label from a code vector (Chapter 3).

• A neural approach to “translate” source code into a natural language sequence.
We implement this approach in neural models for code summarization, code cap-
tioning, and code documentation (Chapter 4).

• A novel approach to language modeling of code: structural language modeling
(SLM). We demonstrate this approach in a neural model that estimates the prob-
ability of code snippets, and can perform any-code completion by searching for
the most probable completion in a given context (Chapter 5).

• Recognition of inherent limitations of graph neural networks (GNNs) in modeling
code and other kinds of structural data: we introduce the over-squashing phe-
nomenon whose implications were observed before, but their source was never
explained (Section 6.1); additionally, we identify that the popular Graph At-
tention Network, does not, in fact, compute the standard and powerful form of
attention (Section 6.2).

• Additional aspects and applications of PLP: the vulnerability of models of code
to semantic-preserving adversarial examples (Section 7.2), and a structural model
for representing and predicting code edits (Section 7.1).

Table 1.1 summarizes the different aspects of programming language processing that
we consider in this thesis.
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Chapter 2

A General Path-Based
Representation for Predicting
Program Properties

Predicting program properties such as names or expression types has a wide range of
applications. It can ease the task of programming, and increase programmer produc-
tivity. A major challenge when learning from programs is how to represent programs
in a way that facilitates effective learning.

We present a general path-based representation for learning from programs. Our
representation is purely syntactic and extracted automatically. The main idea is to
represent a program using paths in its abstract syntax tree (AST). This allows a learning
model to leverage the structured nature of code rather than treating it as a flat sequence
of tokens.

We show that this representation is general and can: cover different prediction tasks,
drive different learning algorithms (for both generative and discriminative models), and
work across different programming languages.

We evaluate our approach on the tasks of predicting variable names, method names,
and full types. We use our representation to drive both CRF-based and word2vec-
based learning, for programs of four languages: JavaScript, Java, Python and C#. Our
evaluation shows that our approach obtains better results than task-specific handcrafted
representations across different tasks and programming languages.

2.1 Introduction

Leveraging machine learning models for predicting program properties such as variable
names, method names, and expression types is a topic of much recent interest (Raychev
et al., 2015; Allamanis et al., 2015a, 2016; Raychev et al., 2016a; Bielik et al., 2016;
Maddison and Tarlow, 2014). These techniques are based on learning a statistical model
from a large amount of code and using the model to make predictions in new programs.
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while (!d) {
if (someCondition()) {

d = true;
}

}

(a) A simple JavaScript program.
(b) The program’s AST, and example of an AST
path.

Figure 2.1: A JavaScript program and its AST, along with an example of one of the
paths.

A major challenge in these techniques (and in many other machine-learning problems) is
how to represent instances of the input space to facilitate learning (Shalev-Shwartz and
Ben-David, 2014). Designing a program representation that enables effective learning
is a critical task that is often done manually for each task and programming language.

Our approach We present a novel program representation for learning from pro-
grams. Our approach uses different path-based abstractions of the program’s abstract
syntax tree. This family of path-based representations is natural, general, fully auto-
matic, and works well across different tasks and programming languages.

AST paths We define AST paths as paths between nodes in a program’s abstract
syntax tree (AST). To automatically generate paths, we first parse the program to
produce an AST, and then extract paths between nodes in the tree. We represent a
path in the AST as a sequence of nodes connected by up and down movements, and
represent a program element as the set of paths that its occurrences participate in.
Figure 2.1a shows an example JavaScript program. Figure 2.1b shows its AST, and
one of the extracted paths. The path from the first occurrence of the variable d to its
second occurrence can be represented as:

SymbolRef ↑ UnaryPrefix! ↑ While ↓ If ↓ Assign= ↓ SymbolRef

This is an example of a pairwise path between leaves in the AST, but in general the
family of path-based representations contains n-wise paths, which do not necessarily
span between leaves and do not necessarily contain all the nodes in between. Specifi-
cally, we consider several choices of subsets of this family in Section 2.3.

Using a path-based representation has several major advantages over existing meth-
ods:

1. Paths are generated automatically: there is no need for manual design of features
aiming to capture potentially interesting relationships between program elements.
This approach extracts unexpectedly useful paths, without the need for an expert
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to design features. The user is required only to choose a subset of our proposed
family of path-based representations.

2. This representation is useful for any programming language, without the need to
identify common patterns and nuances in each language.

3. The same representation is useful for a variety of prediction tasks, by using it
with off-the-shelf learning algorithms or by simply replacing the representation
of program elements in existing models (as we show in Section 2.4.3).

4. AST paths are purely syntactic, and do not require any semantic analysis.

Tasks In this work, we demonstrate the power and generality of AST paths on the
following tasks:

• Predicting names for program elements Descriptive and informative names
for program elements such as variables and classes play a significant role in the
readability and comprehensibility of code. Empirical studies have shown that
choosing appropriate names makes code more understandable (Takang et al.,
1996), reduces code maintenance efforts, and leads to fewer bugs (Butler et al.,
2009). A study in the Psychology of Programming suggests that the ways in which
programmers choose names reflect deep cognitive and linguistic influences (Liblit
et al., 2006). A meaningful name describes the role of a program element, car-
ries its semantic meanings, and indicates its usage and behavior throughout the
program.

• Predicting method names Good method names adequately balance the need
to describe the internal implementation of the method and its external usage (Høst
and Østvold, 2009). When published in a popular library’s API, descriptive and
intuitive method names facilitate the use of methods and classes, while poorly
chosen names can doom a project to irrelevance (Allamanis et al., 2015a). Al-
though method names are clearly program elements and can be predicted by the
previous task, in this task we assumes that all the other names in the method
are given, along with the names of the elements around the method invocation,
when available in the same file.

• Predicting expression types Statistical type prediction allows (likely) types
of expressions to be inferred without the need for type inference, which often
requires a global program view (possibly unavailable, e.g., in the case of snippets
from sites such as StackOverflow).

Raychev et al. (2015) used relations in the AST as features for learning tasks over
programs. They defined an explicit grammar to derive features which capture specific
relationships between nodes in the AST of JavaScript programs, as well as relations
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Figure 2.2: An overview of our approach. We start with a code snippet C, and extract
its path representation to be used as an input to machine learning models. The AST
and paths were extracted from the example program in Figure 2.1a.

produced by language-specific semantic analysis, such as “may call” and “may access”.
We show that our automatic general representation performs better than their features
for their original task, and also generalizes to drive two different learning algorithms
and three different prediction tasks, over different programming languages.

Paths in an AST have also been used by Bielik et al. (2016) and by Raychev et al.
(2016a,b) for a different goal: identifying context nodes. These works do not use the
paths themselves as a representation of the input, and the prediction is only affected
by the context node that was found on the other end of the path. In our work, we
use the path itself as a representation of a program element. Therefore, the prediction
depends not only on the context node but also on the way it is related to the element
in question.

Allamanis et al. (2015a) defined the challenging task of predicting method names,
which can be viewed as a form of function summarization (Allamanis et al., 2016). We
show that our representation performs better by being able to learn across projects.

Contributions The main contributions of this work are:

• A new, general family of representations for program elements. The main idea is
to use AST paths as representations of code.

• A cross-language tool called Pigeon, which is an implementation of our approach
for predicting program element names, method names, and types.

• An evaluation on real-world programs. Our experiments show that our approach
produces accurate results for different languages (JavaScript, Java, Python, C#),
tasks (predicting variable names, method names, types) and learning algorithms
(CRFs, word2vec). Furthermore, for JavaScript and Java, where previous meth-
ods exist, our automatic approach produces more accurate results.
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2.2 Overview

In this section, we illustrate our approach with a simple JavaScript program for the
task of predicting names; as we show in later sections, the same approach also applies
to other tasks, other languages, and other learning algorithms.

Given a program with non-descriptive names, our goal is to predict likely names for
local variables and function parameters. The non-descriptive names could have been
given by an inexperienced programmer, or could have been the result of deliberate strip-
ping. In the latter case, we refer to such a program as a program with stripped names.
Stripping names can be part of a minification process in JavaScript, or obfuscation in
Java and other languages.

Consider the code snippet of Figure 2.1a. This simple snippet captures a common
programming pattern in many languages. Suppose that we wish to find a better name
for the variable d.

Program element representation The main idea of our approach is to extract
paths from the program’s AST and use them to represent an element, such as the
variable d, in a machine learning model. Figure 2.2 shows an overview of this process.
First, we parse the query program to construct an AST. Then, we traverse the tree and
extract paths between AST nodes. To simplify presentation, in this example we only
consider pairwise paths between AST leaves. We assume that a path is represented as
a sequence of AST nodes, linked by up and down movements (denoted by arrows). As
we describe in Section 2.3, the path can also connect a leaf and a higher nonterminal in
the AST, connect several nodes (n-wise path), and can be abstracted in different levels.

Consider the p1 in Figure 2.2, between the two occurrences of the variable d:

SymbolRef ↑ UnaryPrefix! ↑ While ↓ If ↓ Assign= ↓ SymbolRef (I)

The path expresses the fact that the variable d is used, with negation, as a stopping
condition of a “while” loop, and then assigned a new value if an “if” condition inside
the loop evaluates to true. This path alone expresses the fact that d is the stopping
condition of the loop.

The path p4 in Figure 2.2, between the variable d and the value true is:

SymbolRef ↑ Assign= ↓True (II)

This path captures the fact that the assignment changes the value of d to true, and
therefore it is indeed the assignment that stops the loop.

Prediction By observing these two paths, a programmer is likely to name d “done”,
“complete”, “stop” or something similar. Indeed, a learning model that was trained
using our representation predicts that the most likely name for the variable is done,
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and neither “done”, “complete”, nor any similar name was predicted by past work for
this example.

Learning algorithms The learning model can vary between different algorithms,
presenting tradeoffs of efficiency and accuracy. In Section 2.4.3 we show that both CRFs
and word2vec can be used for this prediction task. In both of these learning algorithms,
using AST paths produces better results than the alternative representations, whether
they are manually designed or sequence-based representations.

Path abstractions Automatic generation may produce a prohibitively large number
of paths. To control the number of paths, higher levels of abstraction can be used.
Instead of representing the whole path node-by-node, it can be further abstracted by
keeping only parts of it, which results in similar paths being represented equally, as
we show in Section 2.4.6. Another way to control the number of paths is to limit the
number of extracted paths. We provide hyper-parameters (i.e., model configurations
that are not tuned by the optimization process) that control the maximal length and
width of AST paths. The number of extracted paths can be further reduced using
downsampling, with minimal impact on accuracy and a significant saving in training
time (Section 2.4.3). These methods make the accuracy – training time tradeoff tunable.

Key aspects The example highlights several key aspects of our approach:

• Useful paths such as path I span multiple lines of the program, but are also
supported by shorter paths like path II, which only spans a single program line.
Short paths alone are not enough to predict a meaningful name. Making a pre-
diction using all paths that an element participates in provides a rich context for
predicting the name of the element.

• No special assumptions regarding the AST or the programming language were
made, making the same mechanism useful in other languages in a similar way.

• This representation can be plugged into existing models as a richer representation
of the input code, without interfering with the learning algorithm itself.

• AST paths can distinguish between programs that previous works could not.

• In addition to predicting done, a model trained with AST paths can propose
several semantically similar names, as we demonstrate in Section 2.4.3. This
shows that AST paths are strong indicators of the program element’s semantics.

2.3 AST Paths Representation

In this section, we formally describe the family of AST paths.
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2.3.1 AST Paths

To learn from programs, we are looking for a representation that captures interesting
properties of ASTs while keeping it open for generalization. One way to obtain such
a representation is to decompose the AST to parts that repeat across programs but
can also discriminate between different programs. One such decomposition is into paths
between nodes in the AST. We note that in general we consider n-wise paths, i.e., those
that have more than two ends, but for simplicity we base the following definitions on
pairwise paths between AST terminals.

We start by defining an AST, an AST-path, a path-context and an abstract path-
context.

Definition 2.3.1 (Abstract Syntax Tree). An Abstract Syntax Tree (AST) for a code
snippet C is a tuple ⟨N, T, X, s, δ, val⟩ where N is a set of nonterminal nodes, T is a set of
terminal nodes, X is a set of terminal values, s ∈ N is the root node, δ : N → (N ∪ T )∗

is a function that maps a nonterminal node to a list of its children, and val : T → X

is a function that maps a terminal node to an associated value. Every node except the
root appears exactly once in all the lists of children.

For convenience, we also define π : (N ∪ T ) → N , the inverse function for δ. Given
a node, this function returns its parent node, such that for every two terminal or
nonterminal nodes y1, y2 ∈ (N ∪ T ), one is the parent node of the other if and only if
the latter is in the list of children of the former: π (y1) = y2 ⇐⇒ y1 ∈ δ (y2). In the
case of the start symbol, its parent is undefined.

Next, we define AST pairwise paths. For convenience, in the rest of this section we
assume that all definitions refer to a single AST ⟨N, T, X, s, δ, val⟩.

An AST pairwise path is a path between two nodes in the AST, formally defined
as follows:

Definition 2.3.2 (AST path). An AST-path of length k is a sequence n1d1...nkdknk+1,
where for i ∈ [1..k + 1]: ni ∈ (N ∪ T ) are terminals or nonterminals and for i ∈ [1..k]:
di ∈ {↑, ↓} are movement directions (either up or down in the tree). If di =↑, then:
ni+1 = π (ni); if di =↓, then: ni = π (ni+1). We use start (p) to denote n1 and end (p)
to denote nk+1.

We define a path-context as a tuple of an AST path and the values associated with
its end nodes: (i.e. n1 and nk+1). In general, we consider path-contexts which span
between arbitrary AST nodes, e.g., a terminal and its ancestor, but for simplicity, we
base the following definitions on path-contexts which span between terminals:

Definition 2.3.3 (Path-context). Given an AST Path p, its path-context is the triplet
⟨xs, p, xf ⟩ where xs = val (start (p)) and xf = val (end (p)) are the values associated
with the start and end nodes of p.

17



var item = array[i];

(a) (b)

Figure 2.3: A JavaScript statement and its partial AST.

That is, a path-context describes two nodes from the AST with the syntactic path
between them.

Finally, we define an Abstract path-context as an abstraction of concrete path con-
text:

Definition 2.3.4 (Abstract path-context). Given a path-context ⟨xs, p, xf ⟩ and an ab-
straction function α : P → P̂ , an abstract path-context is the triplet ⟨xs, α (p) , xf ⟩,
where P is the set of AST paths, P̂ is the set of abstract AST paths, and α is a function
that maps a path to an abstract representation of it.

The abstraction function α is any function that transforms a path to a different
representation. A trivial abstraction function is αid, which maps a path to itself:
αid (p) = p.

Example 2.3.5. For example, consider the JavaScript line of code in Figure 2.3a and
its partial AST in Figure 2.3b. We denote the path between the variable item to the
variable array by p. Using αid, the abstract path-context of p is:

⟨item, αid (p) , array⟩ = (2.1)

⟨item, (SymbolV ar ↑ V arDef ↓ Sub ↓ SymbolRef) , array⟩ (2.2)

Using a different abstraction function yields a different abstract path-context, for ex-
ample αforget−arrows:

⟨item, αforget−arrows (p) , array⟩ = (2.3)

⟨item, (SymbolV ar, V arDef, Sub, SymbolRef) , array⟩ (2.4)

Naïvely extracting all the paths in the AST and representing each of them uniquely
can be computationally infeasible, and as a result of the bias-variance tradeoff (Hastie
et al., 2001), can lead to worse prediction results. However, alternative abstraction
functions can be used to control the number of distinct extracted paths. In Section 2.4.6
we describe alternative abstractions that abstract some of the information, and thus
allow us to tune the trade-off between accuracy, training time, and model size.
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var a, b, c, d;

(a) (b)

Figure 2.4: An example statement and its AST, with an example of a path between
the SymbolVar terminals that represent a and d. The length of this path is 4, and its
width is 3.

2.3.2 Limiting the Number of Paths

Another approach for controlling the number of distinct paths is to limit the number
of extracted paths.

Path length and width We define hyper-parameters that limit the path length and
width. We define the following hyper-parameters:

• max_length, defined as the maximal length of a path, i.e., the maximum value
of k.

• max_width, defined as the maximal allowed difference between sibling nodes that
participate in the same path, as shown in Figure 2.4.

When limiting these parameters to certain values, we do not extract longer or wider
paths. We tune the optimal values of width and length by grid search of combinations
on a validation set of programs and choose the combination that yields the highest accu-
racy, as described in Section 2.4. The tuning process of finding the optimal parameter
values should be separate for each language and task.

Obviously, setting the values of these parameters to a value that is too low limits the
expressiveness of the paths, does not capture enough context for each element, limits
the ability to model the training and test data, and therefore produces poor accuracy.
Why, then, does limiting the path length and width actually improve accuracy? There
are several reasons:

• Locality The role of a program element is affected mostly by its surroundings.
For example, consider the program in Figure 2.5. The width of a path that
connects the variable a in the first line to the variable b in the last line is as
large as the number of lines in the program. Usually, the names of a and b can be
predicted by considering elements within a closer distance. Therefore, using paths
between too distant elements can cause noise and pollute the relevant information.

• Sparsity Using paths that are too long can cause the representation space to be
too sparse. A long path might appear too few times (or even only once) in the
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assert.equal(a,1);
assert.equal(...);
...
assert.equal(b,1);

Figure 2.5: An example of a typical program where the maximal path length is relatively
small, but the width can be large.

training set and cause the model to predict specific labels with high probability.
This phenomenon is known as overfitting, where the learned AST paths are very
specific to the training data and the model fails to generalize to new, unseen data.

• Performance There is a practical limit on the amount of data that a model can
be trained on. Too much data can cause the training phase to become infeasibly
long. There is a tradeoff between how many programs the model can be trained
on, and how many paths are extracted from each program. Therefore, it makes
sense to limit the number of extracted paths from each program by limiting the
paths’ length and width, in order to be able to train on a larger and more varied
training set.

In fact, tuning path length and width is used to control the bias-variance tradeoff.
Shorter paths increase the bias error, while longer paths increase the variance error.
The relationship between these parameters and results is discussed and demonstrated
in Section 2.4.5.

2.4 Evaluation

Since the goal of this work is to provide a representation of program elements, we com-
pared the effect of different representations on the accuracy of the learning algorithms.
To show that our approach can be applied to the representation of the input without
modifying the learning algorithm, we used off-the-shelf learning algorithms but repre-
sented the input in each experiment using a different representation (when possible).

Our evaluation aims to answer the following questions:

• How useful are AST paths compared to existing representations? (Section 2.4.3)

• How useful are AST paths across different programming languages, tasks and
learning algorithms? (Section 2.4.3)

• Do AST paths just memorize the input, or do they capture deeper semantic
regularities? (Section 2.4.4)

• How long are the useful paths? How do the paths’ length and width affect the
results? (Section 2.4.5)
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• How important is the concrete representation of paths? Which abstractions can
be used to represent paths without reducing accuracy? (Section 2.4.6)

Leafwise and semi-paths Although the family of representations in this work in-
cludes n-wise paths and paths between any kind of AST nodes, for simplicity and fea-
sible training time, we performed most of the experiments using leafwise-paths (paths
between AST terminals) and semi-paths — paths between an AST terminal and one
of its ancestor nodes in the AST. The idea is that leafwise-paths are more diverse and
therefore more expressive than semi-paths, but semi-paths provide more generalization.
Semi-paths allow us to generalize learning and capture common patterns in different
programs, even if the full path does not recur.

An exception is the prediction of full types in Java, in which we predict types
of expressions which are not necessarily terminals. In this case, we also used paths
between terminals to the nonterminal in question.

2.4.1 Prototype Implementation

We implemented a cross-language tool called Pigeon. The tool consists of separate
modules that parse and traverse the AST of a program in each different language,
but the main algorithm is the same across all languages. Currently Pigeoncontains
modules for Java, JavaScript, Python and C#, and it can be easily extended to any
other language.

AST construction and path extraction For Java we used JavaParser; for JavaScript
we used UglifyJS for parsing and traversing the AST, along with additional modifica-
tions from UnuglifyJS; for Python we used the Python internal parser and AST visitor;
and for C# we used Roslyn.

Learning algorithms We experiment with two learning algorithms: Conditional
Random Fields, based on the implementation of Nice2Predict (Raychev et al., 2015),
and the word2vec based implementation of Levy and Goldberg (2014a).

To support our representation in the learning engine side and produce a qualitative
evaluation, we introduced minor extensions to the Nice2Predict framework:

• Support unary factors. Previously, Nice2Predict supported only pairwise feature
functions, and we implemented support for unary factors to express the rela-
tionship between different occurrences of the same identifier. Note that this is
required because different AST nodes for the same identifier are merged into a
single node in the CRF. Hence, a path between these nodes in the AST becomes
a unary-factor in the CRF. This extension increases accuracy by about 1.5%.

• Top-k candidates suggestion. CRFs output a single prediction for each program
element. We implemented an additional API that receives a parameter k and
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Table 2.1: The amounts of data used for the experimental evaluation of each language.

Total Training Set Test set
Language repos File Size (GB) File Size (MB)
Java 10, 081 1, 717, 016 16 50, 000 1001
JavaScript 6, 863 159, 038 3.4 38, 103 130
Python 8, 565 458, 771 5.4 39, 941 588
C# 1, 000 262, 774 4.7 50, 000 1208

suggests the top-k candidate names for each program element (this extension
was adopted into Nice2Predict). This allowed us to manually investigate the
quality of results (Section 2.4.4). When all top-k predictions for a variable name
captured similar notions, it increased our confidence that the model performs
stable predictions.

2.4.2 Experimental Setting

Datasets For each language, we collected source code from public GitHub projects,
and split it randomly to training, validation and test sets. Our data included the top
ranked projects of each language and the projects that were forked the most. Table 2.1
shows the amount of data used for each language. Java required an order of magnitude
more data than the other languages: we had to keep enlarging our Java dataset to
achieve results that were close to the other languages.

Following recent work which found a large amount of code duplication in GitHub (Lopes
et al., 2017), we devoted much effort into filtering duplicates from our dataset, and espe-
cially the JavaScript dataset. To filter duplicates, we used file names, directory names
(such as “node_modules”), and md5 of files. In Java and Python, which do not com-
mit dependencies, duplication is less severe (as also observed by Lopes et al. (2017)).
Furthermore, in our setting, we took the top-ranked and most popular projects, in
which we observed duplication to be less of a problem (Lopes et al. (2017) measured
duplication across all the code in GitHub).

Evaluation metric For simplicity, in all the experiments we measured the per-
centage of exact match predictions, case-insensitive and ignoring differences in non-
alphabetical characters. For example, this metric considers totalCount as an exact
match to total_count. An exception is the comparison to Allamanis et al. (2016), who
optimized their Java method name prediction model to maximize the F1 score over
sub-tokens. In this case, we compared their model with ours on both exact match and
F1 score. An unknown test label (“UNK”) was always counted as an incorrect predic-
tion, or as a possibly partial prediction when using the F1 score, and our model never
suggests “UNK”. For example, if the true test label is get<UNK>, our model could get
partial precision and partial recall for predicting getFoo.
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Table 2.2: Accuracy comparison for variable name prediction, method name prediction,
and full type prediction using CRFs.

Previous work AST Paths
(this work)

Task: Variable name prediction
JavaScript 24.9% (no-paths) 60.0% (UnuglifyJS) 67.3%
Java 23.7% (rule-based) 50.1% (CRFs+4-grams) 58.2%
Python 35.2% (no-paths) 56.7% (top-7)
C# 56.1%

Task: Method name prediction
JavaScript 44.1% (no-paths) 53.1%
Java 16.5%, F1: 33.9 (Allamanis et al. (2016)) 47.3%, F1: 49.9
Python 41.6% (no-paths) 51.1% (top-7)

Task: Full type prediction
Java 24.1% (naïve baseline) 69.1%

Table 2.3: Accuracy comparison for the variable name prediction task that was evalu-
ated using word2vec in JavaScript.

Model Names Accuracy
linear token-stream + word2vec 20.6%
path-neighbors, no-paths + word2vec 23.2%
AST Paths (this work) + word2vec 40.4%

2.4.3 Quantitative Evaluation

We conducted several experiments to evaluate the usefulness of AST paths in different
tasks and programming languages. We performed the following quantitative experi-
ments:

• Prediction of variable names across all four languages. Variable names have
sufficient training data in all languages to produce meaningful results. In this
experiment we used both CRFs and word2vec. As baselines we used the work of
Raychev et al. (2015), CRFs with token-based n-grams as factors, and a simple
rule-based baseline. For JavaScript with word2vec, we used word2vec with linear
token context as a baseline and show that path representations yield dramatic
improvement.

• Prediction of method names across JavaScript, Java and Python. We compared
our general approach for method name prediction with Allamanis et al. (2016),
who used a convolutional neural network with attention.

• Prediction of full types in Java. For Java, we compared our results to a synthetic
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(straw-man) baseline that predicts all types to be java.lang.String. This baseline
shows that despite the prevalence of the String type, the task of type prediction
is still very challenging.

In all of the following CRF experimental setups, “no-path” refers to a “bag-of-
words” baseline, in which we used the same CRF learning algorithm, but used a single
symbol to represent all relations. In this baseline, path information was hidden from the
model during training and testing, and therefore it always assigned the same likelihood
for each specific pair of identifiers, regardless of the syntactic relation between them.
This baseline can be seen as a “bag of near identifiers” that uses the neighbors’ names
without their syntactic relation and therefore without considering the way program
elements are related.

Predicting Variable Names

To predict variable names, we used both CRFs and word2vec.

Evaluation with CRFs We present our evaluation results with CRFs for names in
the top part of Table 2.2. For JavaScript, where a tool that uses predefined features
exists, we evaluated the other tool with the exact same datasets and settings, and
the same AST terminals as CRF nodes, which makes the input representation (AST
paths vs. their features) the only difference between the two experiments. Using our
representations yields 7.6% higher accuracy than the previous work.

For Java, we compared the results with two baselines:

• CRFs + n-grams - this baseline uses the same CRF nodes as the path-based
model, except that the relations between them are the sequential n-grams. We
chose n = 4 as the value that maximizes accuracy on the validation set, such that
the produced model consumes approximately the same amount of memory and
disk as the path-based model.

• Rule-based - Since Java is a typed language which has a rich type system, and
typical code tends to use a lot of classes and interfaces, we wonder whether the
task of predicting variable names is easier in Java than in other languages and can
be solved using traditional rule-based (non-learning) approaches. Our rule-based
baseline predicts variable names based on the following pattern heuristics and
statistics of the training corpus:

– for(int i = ...) {

– this.<fieldName> = <fieldName>;

– catch (... e) {

– void set<fieldName>(... <fieldName>) {

– Otherwise: use the type: HttpClient client.
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As shown, using CRFs with AST paths yields higher results than the baselines, in
all the languages, showing that our representation yields higher results than manually
defined features, n-grams, and rule-based approaches.

Evaluation with word2vec We present our evaluation results with a word2vec
based implementation in Table 2.3. For comparison, we use two alternative approaches
to represent the context for prediction:

• The linear token-stream approach uses the surrounding tokens to predict a vari-
able name. Surrounding tokens (e.g., values, keywords, parentheses, dots and
brackets) may implicitly hint at the syntactic relations, without AST paths. This
is the type of context usually used in NLP, in the original implementation of
word2vec, and in many works in programming languages.

• The path-neighbors, no-paths approach uses the same surrounding AST nodes for
contexts as AST paths, except that the path itself is hidden, and only the identity
of the surrounding AST nodes is used. The goal of using this baseline is to show
that the advantage of AST paths over token-stream is not only in their wider
span, but in the representation of the path itself.

Using word2vec with AST paths produces much better results compared to these
baselines. This shows the advantage of using AST paths as context over token-stream
based contexts, and the significance of using a representation of the paths for prediction.

Limitations of evaluation We noticed that our models often predict names that are
very similar but not identical to the original name, such as message instead of msg, or
synonyms such as complete instead of done; these are counted as incorrect predictions.
Moreover, we noticed that our models sometimes predict better names than the original
names. Therefore, the accuracy results are an underapproximation of the ability of AST
paths to predict meaningful names.

Another limitation lies in the inability of CRFs and word2vec to predict out-of-
vocabulary (OoV) names. As was previously observed (Allamanis et al., 2016, 2015a),
there are two main types of OoV names in programs: names that did not appear in
the training corpus but can be composed of known names (neologisms), and entirely
new names. The total OoV rate among our various datasets and tasks varied between
5 − 15%, and specifically 7% for predicting variable names in JavaScript, and 13%
for Java method names. Several techniques were suggested to deal with each type of
OoV (Allamanis et al., 2016, 2015a), which we did not consider here and are out of
scope of this work.

Discussion We note that the accuracy for Java is lower than for JavaScript. We
have a few possible explanations: The JavaScript training set contains projects that are
rather domain specific, mostly client and server code for web systems (for example, the
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terms request and response are widely used across all projects). In contrast, the Java
code is much more varied in terms of domains. Additionally, the Java naming scheme
makes extensive use of compound names (e.g., multithreadedHttpConnectionManager),
and this is amplified by the type-based name suggestions for variables provided by
modern Java IDEs. In contrast, the JavaScript variable names are typically shorter and
are not an amalgamation of multiple words (e.g., value, name, elem, data are frequent
names).

The accuracy of C# is similar to Java, but using significantly less training data.
We believe that C# naming is more structured because the commonly used C# IDE
(VisualStudio), suggests variable names based on their types.

The accuracy for Python is lower than that of JavaScript. Manual examination
of the training data shows that Python programs vary widely in code quality, making
the training set more noisy than that of other languages. In addition, the variety of
domains and IDEs for Python makes variable names less standard. Finally, Python
is easy to write, even for non-programmers, and thus there is a wide variety of non-
professional Python code. The low accuracy for Python is also consistent with Raychev
et al. (2016a).

Comparison of CRFs and word2vec We observe that the accuracy of Pigeon
+ CRFs is higher than that of Pigeon+ word2vec, as can be seen in Table 2.2. One
reason is that, unlike CRFs, word2vec was not designed exactly for this prediction task.
Originally, word2vec was intended to produce meaningful word embeddings: given a
set of query path-contexts, the vectors of all of them are assigned the same weight for
predicting the unknown value.

Moreover, CRFs are relatively more interpretable. The weights assigned to each
factor can be observed and explain a prediction posteriori. However, word2vec was
faster to train and much more memory efficient. In our evaluation, the memory required
for training was over 200GB for CRFs and only 10GB with word2vec. Further, the
training time of CRFs was up to 100 hours, where word2vec required at most 5 hours.

The goal here is not to provide a fair comparison between CRFs and word2vec, as
their prediction tasks are slightly different; our observations in this regard are merely
anecdotal. The main goal is to compare different representations for the same learning
algorithm and show that each of the learning algorithms separately can be improved
by plugging in our simple representation.

Predicting Method Names

We present our evaluation results for predicting method names in Table 2.2. Accuracy
was similar for all languages (∼ 50%).

Good method names balance the need to describe the internal implementation of
the method and its external usage (Høst and Østvold, 2009). For predicting method
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def sh3(c):
p = Popen(c, stdout=PIPE,

stderr=PIPE, shell=True)
o, e = p.communicate()
r = p.returncode
if r:

raise CalledProcessError(r, c)
else:

return o.rstrip(), e.rstrip()

(a) Stripped names

def sh3(cmd):
process = Popen(cmd, stdout=PIPE,

stderr=PIPE, shell=True)
out, err = process.communicate()
retcode = process.returncode
if retcode:

raise CalledProcessError(retcode, cmd)
else:

return out.rstrip(), err.rstrip()

(b) AST paths + CRFs

Figure 2.6: Example of a Python program with stripped names and with predictions
produced using our AST paths.

names, we use mostly the paths from within a method to its name, but when available
in the same file, we also use paths from invocations of the method to the method name.
Ideally, one would use paths from different files (and for library methods, even across
projects), but this requires a non-local view, which we would like to avoid for efficiency
reasons.

We use the internal paths from the leaf that represents the method name to other
leaves within the method AST (which capture the method implementation) and the
external paths from references of the method to their surrounding leaves (which rep-
resent the usage of the method). However, we observed that using only internal paths
yields only 1% lower accuracy.

In Java, CRFs with AST paths are compared to the model of Allamanis et al.
(2016), which we trained on the same training corpus. Since their model is optimized
to maximize the F1 score over sub-tokens, Table 2.2 presents both exact accuracy and
F1 score for method name prediction in Java. The table shows that CRFs with AST
paths significantly improve over the previous work in both metrics.

Predicting Full Types

Our results for predicting full types in Java using CRFs are shown in the bottom part
of Table 2.2. Our goal is to predict the full type even when it explicitly appears in
the code (e.g., com.mysql.jdbc.Connection, rather than org.apache.http.Connection).
Here we also use paths from leaves to nonterminals which represent expressions. The
evaluated types were only those that could be solved by a global type inference engine.
Therefore, accuracy is the percent of correct predictions out of the results that are
given by type inference.

Although a type inference engine still produces more accurate results than our learn-
ing approach, our results using AST paths are surprisingly good, especially considering
the relative simplicity of our representation. We also note that type inference is a global
task, and our approach reconstructs types locally without considering the global scope
of the project.
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function f(a, b, c) {
b.open('GET', a, false);
b.send(c);

}

(a) Stripped Names
function f(url, request, callback) {

request.open('GET', url, false);
request.send(callback);

}

(b) AST Paths + CRFs

function f(source, req, n) {
req.open("GET", source, false);
req.send(n);

}

(c) nice2predict.org

Figure 2.7: Example of a JavaScript program with stripped names, with predictions
produced using our AST paths and an online version of UnuglifyJS at nice2predict.org.
This is the default example shown at nice2predict.org.

int count(List<Integer> x, int t) {
int c = 0;
for (int r: x) {

if (r == t) {
c++;

}
}
return c;

}

(a) Stripped names

int count(List<Integer> values, int value) {
int count = 0;
for (int v: values) {

if (v == value) {
count++;

}
}
return count;

}

(b) AST paths + CRFs

Figure 2.8: Examples of Java programs with stripped names and with predictions
produced using our AST paths. We deliberately selected challenging examples in which
the prediction cannot be aided by specific classes and interfaces.

CRFs with AST paths achieved 69.1% accuracy when predicting full type for Java.
We contrast this result with a naïve baseline that uniformly predicts the type java.lang.String
for all expressions. This naive baseline yields an accuracy of 24.1%, which shows the
task is nontrivial, even when factoring out the most commonly used Java type.

2.4.4 Qualitative Evaluation

Our qualitative evaluation includes:

• An anecdotal study of name prediction in different languages. For JavaScript we
also compared our predictions to those of Raychev et al. (2015) in interesting
cases.

• An anecdotal study of top-k predictions for some examples, showing semantic
similarities between predicted names as captured by the trained model.
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Prediction Examples

Figure 2.6 shows an example of a Python program predicted using AST paths. It can
be seen that all the names predicted using AST paths were renamed with meaningful
names such as process, cmd and retcode.

Figure 2.7 shows the default JavaScript example from nice2predict.org, predicted
using AST paths and an online version of UnuglifyJS at nice2predict.org. We note that
their online model was not trained on the same dataset as our model. The model
which was trained using UnuglifyJS and our dataset yielded worse results. It can be
seen that our model produced more meaningful names such as url (instead of source)
and callback (instead of n).

Figure 2.8 shows examples of Java programs. To demonstrate the expressiveness
of AST paths, we deliberately selected challenging examples in which the prediction
cannot be aided by the informative class and interface names that Java code usually
contains (as in: HttpClient client). Instead, our model had to leverage the syntactic
structure to predict the meaningful names: done, values, value and count.

2.4.5 Impact of Parameter Values

In Section 2.3 we introduced and discussed the importance of the max_length and
max_width parameters. For each language we experimented with different combina-
tions of values for max_length and max_width on its validation set. We chose the
values that produced the highest accuracy while still being computationally feasible
when evaluating the model with the test set.

Accuracy with different path length and width We experimented with tuning
the path parameters and observed their effect on the accuracy. The best parameter
values for each prediction are shown in Table 2.2.

For the task of name prediction, for all languages, the best path length is 6-7, and
the best width is 3-4. The variations in path length stem from minor differences in the
structure of the AST. For example, despite the similarity in source level between Java
and C#, the C# AST is slightly more elaborate than the one we used for Java.

A drill-down of the accuracy given different parameter values for variable name
prediction in JavaScript is shown in Figure 2.9. We observe that the max_length pa-
rameter has a significant positive effect, while the contribution of a larger max_width

is positive but minor. This observation affirms our initial hypothesis that our long-
distance paths are fundamental and crucial to the accuracy of the prediction. It also
confirms our belief that an automatic representation of code (rather than manually de-
fined) is essential, since the long-distance paths are very unlikely to have been designed
manually.

For the task of method name prediction, since there are significantly fewer paths,
we could afford to set a high parameter value without too much tuning and still keep
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Figure 2.9: Accuracy results of AST paths with CRFs, for the task of variable nam-
ing in JavaScript, for different combination values of max_length and max_width
(UnuglifyJS is presented here for comparison).

the training time and resources feasible. We therefore set the length in this case to 12
for JavaScript, 10 for Python, and just 6 for Java.

For the task of predicting full types in Java, we used length 4 and width 1, which
yielded an accuracy of 69.1%. The intuition for the short path length is that in many
cases the type of an expression can be inferred locally from other neighboring types,
often from an explicit type declaration.

Higher values for max_length and max_width resulted in higher training times,
but combined with the downsampling approach, it is possible to maintain a shorter
training time while increasing the parameter values, and control the tradeoff between
accuracy and training time.

2.4.6 Abstractions of AST Paths

In order to evaluate the full expressiveness of AST paths, the previously reported
experiments were performed using no abstraction, i.e. αid. However, it is also possible
to use a higher level of abstraction. Instead of representing the whole path node-by-
node with separating up and down arrows, it is possible to keep only parts of this
representation. This abstraction results in less expressive paths and might represent
two different paths as equal, but it enables decreasing the number of distinct paths,
thus reducing the number of model parameters. Training will be faster as a result.

Different levels of path abstractions also allow us to evaluate the importance of
different components of AST paths, or which components of AST paths contribute to
their usefulness the most. We experimented with several levels of abstraction:

• “No-arrows” - using the full path encoding, except the up and down symbols
{↑, ↓}.
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Figure 2.10: The accuracy of each abstraction method compared to the consumed
training time, for the task of variable naming in Java

• “Forget-order” - using paths without arrows and without order between the nodes:
instead of treating a path as a sequence of nodes, treat it as a bag of nodes.

• “First-top-last” - keeping only the first, top and last nodes of the path. The “top”
node refers to the node that is hierarchically the highest, from which the direction
of the path changes from upwards to downwards.

• “First-last” - keeping only the first and last nodes.

• “Top” - keeping only the top node.

• “No-paths” - using no paths at all, and treating all relations between program
elements as the same. The name of an element is predicted by using the bag
of surrounding identifiers, without considering the syntactic relation to each of
them.

All of the following experiments were performed using CRFs for variable names
prediction, on the Java corpus and on the same hardware. In every experiment, the
training corpus and the rest of the settings were identical. The number of training
iterations was fixed.

Figure 2.10 shows the accuracy of each abstraction compared to the consumed
training time. As shown, as more information is kept, accuracy is increased, with the
cost of a longer training time. An interesting “sweet-spot” is “first-top-last”, which
reduces training time by half compared to the full representation, with accuracy that
is as 95% as good.

We also observe that the arrows and the order of the nodes in the path contribute
about 1% accuracy.
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Chapter 3

code2vec: Learning Distributed
Representations of Code

3.1 Introduction

Distributed representations of words (such as “word2vec”) (Mikolov et al., 2013a,b;
Pennington et al., 2014), sentences, paragraphs, and documents (such as “doc2vec”)
(Le and Mikolov, 2014) have played a key role in unlocking the potential of neural
networks for natural language processing (NLP) tasks (Bengio et al., 2003; Collobert
and Weston, 2008; Socher et al., 2011; Turian et al., 2010; Glorot et al., 2011; Turney,
2006). Methods for learning distributed representations produce low-dimensional vector
representations for objects, referred to as embeddings. In these vectors, the “meaning”
of an element is distributed across multiple vector components, such that semantically
similar objects are mapped to close vectors.

Goal: The goal of this work is to learn code embeddings, continuous vectors for repre-
senting snippets of code. By learning code embeddings, our long-term goal is to enable
the application of neural techniques to a wide range of programming-language tasks.
In this work, we use the motivating task of semantic labeling of code snippets.

Motivating task: semantic labeling of code snippets Consider the method in
Figure 3.1. The method contains only low-level assignments to arrays, but a human
reading the code may (correctly) label it as performing the reverse operation. Our goal
is to predict such labels automatically. The right-hand side of Figure 3.1 shows the
labels predicted automatically using our approach. The most likely prediction (77.34%)
is reverseArray. Section 3.5 provides additional examples.

This problem is hard because it requires learning a correspondence between the
entire content of a method and a semantic label. That is, it requires aggregating
possibly hundreds of expressions and statements from the method body into a single,
descriptive label.
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Predictions
reverseArray 77.34%
reverse 18.18%
subArray 1.45%
copyArray 0.74%

Figure 3.1: A code snippet and its predicted labels as computed by our model.

Our approach We present a novel framework for predicting program properties using
neural networks. Our main contribution is a neural network that learns code embeddings
— continuous distributed vector representations for code. The code embeddings allow
us to model correspondence between code snippets and labels in a natural and effective
manner.

Our neural network architecture uses a representation of code snippets that lever-
ages the structured nature of source code and learns to aggregate multiple syntactic
paths into a single vector. This ability is fundamental to the application of deep learning
in programming languages, in the same way that word embeddings in natural language
processing (NLP) are fundamental to the application of deep learning for NLP tasks.

The input to our model is a code snippet and a corresponding tag, label, caption, or
name. This label expresses the semantic property that we wish the network to model,
for example, a tag that should be assigned to the snippet, or the name of the method,
class, or project that the snippet was taken from. Let C be the code snippet and L be
the corresponding label or tag. Our underlying hypothesis is that the distribution of
labels can be inferred from syntactic paths in C. Our model therefore attempts to learn
the label distribution, conditioned on the code: P (L|C).

We demonstrate the effectiveness of our approach for the task of predicting a
method’s name given its body. This problem is important as good method names
make code easier to understand and maintain. A good name for a method provides
a high-level summary of its purpose. Ideally, “If you have a good method name, you
don’t need to look at the body.” (Fowler and Beck, 1999). Choosing good names can be
especially critical for methods that are part of public APIs, as poor method names can
doom a project to irrelevance (Allamanis et al., 2015a; Høst and Østvold, 2009).

Capturing semantic similarity between names During the process of learning
code vectors, a parallel vocabulary of vectors of the labels is learned. When using our
model to predict method names, the method-name vectors provide surprising semantic
similarities and analogies. For example, vector(equals) + vector(toLowerCase) results
in a vector that is closest to vector(equalsIgnoreCase).

Like the famous NLP example of: vec(“king′′) − vec(“man′′) + vec(“woman′′) ≈
vec(“queen′′) (Mikolov et al., 2013c), our model learns analogies that are relevant to
source code, such as: “receive is to send as download is to: upload”. Table 3.1 shows
additional examples, and Section 3.5.4 provides a detailed discussion.
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Table 3.1: Semantic similarities between method names.

A ≈B
size getSize, length, getCount, getLength
active isActive, setActive, getIsActive, enabled
done end, stop, terminate
toJson serialize, toJsonString, getJson, asJson
run execute, call, init, start
executeQuery executeSql, runQuery, getResultSet
actionPerformed itemStateChanged, mouseClicked, keyPressed
toString getName, getDescription, getDisplayName
equal eq, notEqual, greaterOrEqual, lessOrEqual
error fatalError, warning, warn

3.1.1 Applications

Embedding a code snippet as a vector has a variety of machine-learning based appli-
cations, since machine-learning algorithms usually take vectors as their inputs. In this
work, we examine the following direct applications:

1. Automatic code review - Suggesting better method names when the name given
by the developer doesn’t match the method’s functionality. Better method names
prevent naming bugs, improve the readability and maintenance of code, and fa-
cilitate the use of public APIs. This application was previously shown to be of
significant importance (Fowler and Beck, 1999; Allamanis et al., 2015a; Høst and
Østvold, 2009).

2. Retrieval and API discovery - Semantic similarities enable search in “the problem
domain” instead of search “in the solution domain”. For example, a developer
might look for a serialize method, while the equivalent method of the class is
named toJson as serialization is performed via json. An automatic tool that
looks for the vector most similar to the requested name among the available
methods will find toJson (Table 3.1). Such semantic similarities are difficult to
find without our approach. Further, an automatic tool which uses our vectors
can easily determine that a programmer is using the method equals right after
toLowerCase and suggest using equalsIgnoreCase instead (Table 3.6).

The code vectors we produce can be used as input to any machine learning pipeline
that performs tasks such as code retrieval, captioning, classification and tagging, or
as a metric for measuring similarity between snippets of code for ranking and clone
detection. The novelty of our approach is in its ability to produce vectors that capture
properties of snippets of code, such that similar snippets (according to any desired
criteria) are assigned similar vectors. This ability unlocks a variety of applications for
working with machine-learning algorithms on code.
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We deliberately picked the difficult task of method name prediction, for which
prior results were poor (Allamanis et al., 2016; Alon et al., 2018; Allamanis et al.,
2015a), as an evaluation benchmark. Succeeding in this challenging task implies good
performance in other tasks such as predicting whether or not a program performs I/O,
predicting the required dependencies of a program, and predicting whether a program is
a suspected malware. We show that even for this challenging benchmark, our technique
dramatically improves the results of previous works.

3.1.2 Challenges: Representation and Attention

Assigning a semantic label to a code snippet (such as a name to a method) is an
example for a class of problems that require a compact semantic descriptor of a snippet.
The question is how to represent code snippets in a way that captures some semantic
information, is reusable across programs, and can be used to predict properties such as
a label for the snippet. This leads to two challenges:

• Representing a snippet in a way that enables learning across programs.

• Learning which parts in the representation are relevant to prediction of the desired
property, and learning the order of importance of the part.

Representation NLP methods typically treat text as a linear sequence of tokens.
Indeed, many existing approaches also represent source code as a token stream (Al-
lamanis et al., 2014; Allamanis and Sutton, 2013; Allamanis et al., 2016; Movshovitz-
Attias and Cohen, 2013; White et al., 2015; Hindle et al., 2012). However, as observed
previously (Bielik et al., 2016; Raychev et al., 2015; Alon et al., 2018), programming
languages can greatly benefit from representations that leverage the structured nature
of their syntax.

We note that there is a tradeoff between the degree of program analysis required to
extract the representation and the learning effort that follows. Performing no program
analysis but learning instead from the program’s surface text often incurs a significant
learning effort. This learning effort thus requires prohibitive amounts of data because
the learning model has to re-learn the syntax and semantics of the programming lan-
guage from the data. On the other end of the spectrum, performing a deep program
analysis to extract the representation may make the learned model language-specific
(and even task-specific).

Following previous works (Alon et al., 2018; Raychev et al., 2015), we use paths
in the program’s abstract syntax tree (AST) as our representation. By representing a
code snippet using its syntactic paths, we can capture regularities that reflect common
code patterns. We find that this representation significantly lowers the learning effort
(compared to learning over program text), and is still scalable and general such that it
can be applied to a wide range of problems and large amounts of code.
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We represent a given code snippet as a bag (multiset) of its extracted paths. The
challenges are then how to aggregate a bag of contexts and which paths to focus on for
making a prediction.

Attention The problem can be stated informally as the need to learn a correspon-
dence between a bag of path-contexts and a label. Representing each bag of path-
contexts monolithically will result in sparsity – even similar methods will not have
the exact same bag of path-contexts. We therefore need a compositional mechanism
that can aggregate a bag of path-contexts such that bags that yield the same label are
mapped to close vectors. Such a compositional mechanism would be able to generalize
and represent new unseen bags by utilizing the individual path-contexts and their com-
ponents (paths, values, etc.) that were observed during training to be parts of other
bags.

To address this challenge we use a novel neural attention network architecture. At-
tention models have gained much popularity recently, mainly for neural machine trans-
lation (NMT) (Bahdanau et al., 2014; Luong et al., 2015; Vaswani et al., 2017), reading
comprehension (Levy et al., 2017; Seo et al., 2016), speech recognition (Chorowski et al.,
2015; Bahdanau et al., 2016) and computer vision (Xu et al., 2015; Mnih et al., 2014;
Ba et al., 2014).

Our neural attention mechanism learns how much focus (“attention”) should be
given to each element in a bag of path-contexts. It allows us to precisely aggregate the
information captured in each individual path-context into a single vector that captures
information about the entire code snippet. As we show in Section 3.5.4, our model
is relatively interpretable: the weights allocated by our attention mechanism can be
visualized to understand the relative importance of each path-context in a prediction.
The attention mechanism is learned simultaneously with the embeddings, optimizing
both the atomic representations of paths and the ability to compose multiple contexts
into a single code vector.

Soft and hard attention The terms “soft” and “hard” attention were proposed for
the task of image caption generation by Xu et al. (2015). Applied in our setting, soft
attention means that weights are distributed “softly” over all path-contexts in a code
snippet, while hard attention refers to selection of a single path-context to focus on
at a time. The use of soft attention over syntactic paths is the main understanding
that leads to the improved results. We compare our model to an equivalent model that
uses hard attention in Section 3.5.2, and show that soft attention is more efficient for
modeling code.

3.1.3 Existing Techniques

The problem of predicting program properties by learning from big code has seen great
interest and progress in recent years (Raychev et al., 2016a; Allamanis et al., 2014;
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Bielik et al., 2016; Allamanis and Sutton, 2013; Hindle et al., 2012). The ability to
predict semantic properties of a program without running it, and with little or no
semantic analysis at all, is crucial to a wide range of applications: predicting names for
program entities (Alon et al., 2018; Raychev et al., 2015; Allamanis et al., 2015a), code
completion (Raychev et al., 2014; Mishne et al., 2012), code summarization (Allamanis
et al., 2016), code generation (Murali et al., 2018; Maddison and Tarlow, 2014; Amodio
et al., 2017), and more (see (Allamanis et al., 2017; Vechev and Yahav, 2016) for a
survey).

3.1.4 Contributions

The main contributions of this work are:

• A path-based attention model for learning vectors for arbitrary-sized snippet of
code. This model allows us to embed a program, which is a discrete object, into a
continuous space, such that it can be fed into a deep learning pipeline for various
tasks.

• As a benchmark for our approach, we perform a quantitative evaluation for pre-
dicting cross-project method names, trained on more than 12M methods of real-
world data and compared with previous works. Experiments show that our ap-
proach achieves significantly better results than previous works, which used Long
Short-Term Memory networks (LSTMs), CNNs and CRFs.

• A qualitative evaluation that interprets the attention that the model has learned
to give to the different path-contexts when making predictions.

• A collection of method name embeddings, which often assign semantically similar
names to similar vectors, and even make it possible to compute analogies using
simple vector arithmetic.

• An analysis that shows the significant advantages in terms of generalization ability
and space complexity of our model, compared to previous non-neural works such
as Alon et al. (2018) and Raychev et al. (2015).

3.2 Overview

In this section we demonstrate how our model assigns different vectors to similar snip-
pets of code, in a way that captures the subtle differences between them. The vectors are
useful for making a prediction about each snippet, even though none of these snippets
has been observed in its entirely in the training data.

The main idea of our approach is to extract syntactic paths from within a code
snippet, represent them as a bag of distributed vector representations, and use an
attention mechanism to compute a learned weighted average of the path vectors in
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(a) (b) (c)
Predictions:
contains
matches
canHandle
equals
containsExact

Predictions
get
getProperty
getValue
getElement
getObject

Predictions
indexOf
getIndex
findIndex
indexOfNull
getInstructionIndex

Figure 3.2: Examples of three methods that can be easily distinguished by our model
despite having similar syntactic structure: our model successfully captures the subtle
differences between them and predicts meaningful names. Each method portrays the
top-4 paths that were given the most attention by the model. The widths of the colored
paths are proportional to the attention that each path was given.

order to produce a single code vector. Finally, this code vector can be used for various
tasks, such as to predict a likely name for the whole snippet.

3.2.1 Motivating Example

Since method names are usually descriptive and accurate labels for code snippets, we
demonstrate our approach for the task of learning code vectors for method bodies and
predicting the method name given the body. In general, the same approach can be
applied to any snippet of code that has a corresponding label.

Consider the three Java methods in Figure 3.2. These methods share a similar
syntactic structure. They all: have a single parameter named target; iterate over a
field named elements; and have an if condition inside the loop body.

The main differences are that the method of Figure 3.2a returns true when elements
contains target and false otherwise; the method of Figure 3.2b returns the element
from elements for which target equals its hashCode; and the method of Figure 3.2c
returns the index of target in elements. Despite their shared characteristics, our
model captures the subtle differences and predicts the respective descriptive method
names: contains, get, and indexOf.

Path extraction First, each query method in the training corpus is parsed to con-
struct an AST. Then, the AST is traversed and syntactic paths between AST leaves
are extracted. Each path is represented as a sequence of AST nodes, linked by up and
down arrows, which symbolize the up or down link between adjacent nodes in the tree.
The path composition is kept with the values of the AST leaves it is connecting, as a
tuple we refer to as a path-context. These terms are defined formally in Section 3.3.
Figure 3.3 portrays the top-four path-contexts that were given the most attention by
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Figure 3.3: The top-4 attended paths of Figure 3.2a, as were learned by the model,
shown on the AST of the same snippet. The width of each colored path is proportional
to the attention it was given (red 1O: 0.23, blue 2O: 0.14, green 3O: 0.09, orange
4O: 0.07).

the model, on the AST of the method from Figure 3.2a, such that the width of each
path is proportional to the attention it was given by the model during this prediction.

Distributed representation of contexts Each of the path and leaf-values of a
path-context is mapped to its corresponding real-valued vector representation, or its
embedding. Then, the three vectors of each context are concatenated to a single vector
that represents that path-context. During training, the values of the embeddings are
learned jointly with the attention parameter and the rest of the network parameters.

Path-attention network The Path-Attention network aggregates multiple path-
context embeddings into a single vector that represents the entire method body. At-
tention is the mechanism that learns to score each path-context, such that higher atten-
tion is reflected in a higher score. These multiple embeddings are aggregated using the
attention scores into a single code vector. The network then predicts the probability for
each target method name given the code vector. The network architecture is described
in Section 3.4.

Path-attention interpretation While it is usually difficult or impossible to inter-
pret specific values of vector components in neural networks, it is possible and interest-
ing to observe the attention scores that each path-context was given by the network.
Each code snippet in Figure 3.2 and Figure 3.3 highlights the top-four path-contexts
that were given the most weight (attention) by the model in each example. The widths
of the paths are proportional to the attention score that each of these path-contexts
was given. The model has learned how much weight to give every possible path on its
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own, as part of training on millions of examples. For example, it can be seen in Fig-
ure 3.3 that the red 1O path-context, which spans from the field elements to the return
value true, was given the highest attention. For comparison, the blue 2O path-context,
which spans from the parameter target to the return value false, was given a lower
attention.

Consider the red 1O path-context of Figure 3.2a and Figure 3.3. As we explain in
Section 3.3, this path is represented as:

(elements, Name↑FieldAccess↑Foreach↓Block↓IfStmt↓Block↓Return↓BooleanExpr, true)

Inspecting this path node-by-node reveals that this single path captures the main
functionality of the method: the method iterates over a field called elements, and for
each of its values it checks an if condition; if the condition is true, the method returns
true. Since we use soft attention, the final prediction takes into account other paths as
well, such as paths that describe the if condition itself, but it can be understood why
the model gave this path the highest attention.

Figure 3.2 also shows the top-5 suggestions from the model for each method. As
can be seen in all three examples, most of the top suggestions are very similar to each
other and all of them are descriptive of the method. Observing the top-5 suggestions in
Figure 3.2a shows that two of them (contains and containsExact) are very accurate, but
it can also be imagined how a method called matches would share similar characteristics:
a method called matches is also likely to have an if condition inside a for loop, and to
return true if the condition is true.

Another interesting observation is that the orange 4O path-context of Figure 3.2a,
which spans from Object to target, was given a lower attention than other path-contexts
in the same method but higher attention than the same path-context in Figure 3.2c.
This demonstrates how attention is not constant but is given with respect to the other
path-contexts in the code.

Comparison with n-grams The method in Figure 3.2a shows the four path-contexts
that were given the most attention during the prediction of the method name contains.
Out of them, the orange 4O path-context, spans between two consecutive tokens:
Object and target. This might create the (false) impression that representing this
method as a bag-of-bigrams could be as expressive as syntactic paths. However, as
can be seen in Figure 3.3, the orange 4O path goes through an AST node of type
Parameter, which uniquely distinguishes it from, for example, a local variable dec-
laration of the same name and type. In contrast, a bigram model will represent the
expression Object target equally whether target is a method parameter or a local vari-
able. This shows that a model using a syntactic representation of a code snippet can
distinguish between two snippets of code that other representations cannot. By aggre-
gating all the contexts using attention, the model can use subtle differences between
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snippets to produce a more accurate prediction.

Key aspects The illustrated examples highlight several key aspects of our approach:

• A code snippet can be efficiently represented as a bag of path-contexts.

• Using a single context is not enough to make an accurate prediction. An attention-
based neural network can identify the importance of multiple path-contexts and
aggregate them accordingly to make a prediction.

• Subtle differences between code snippets are easily distinguished by our model,
even if the code snippets have a similar syntactic structure and share many com-
mon tokens and n-grams.

• Large corpus, cross-project prediction of method names is possible using this
model.

• Although our model is based on a neural network, the model is human-interpretable
and provides interesting observations.

3.3 Background - Representing Code using AST Paths

In this section, we briefly describe the representation of a code snippet as a set of
syntactic paths in its abstract syntax tree (AST). This representation is based on the
general-purpose approach for representing program elements by Alon et al. (2018). The
main difference in this definition is that we define this representation to handle whole
snippets of code, rather than a single program element (such as a single variable), and
use it as input to our path-attention neural network.

We start by defining an AST, a path and a path-context.

Definition 3.3.1 (Abstract Syntax Tree). An Abstract Syntax Tree (AST) for a code
snippet C is a tuple ⟨N, T, X, s, δ, ϕ⟩ where N is a set of nonterminal nodes, T is a set
of terminal nodes, X is a set of values, s ∈ N is the root node, δ : N → (N ∪ T )∗ is
a function that maps a nonterminal node to a list of its children, and ϕ : T → X is a
function that maps a terminal node to an associated value. Every node except the root
appears exactly once in all the lists of children.

Next, we define AST paths. For convenience, in the rest of this section we assume
that all definitions refer to a single AST ⟨N, T, X, s, δ, ϕ⟩.

An AST path is a path between nodes in the AST, starting from one terminal,
ending in another terminal, and passing through an intermediate nonterminal in the
path which is a common ancestor of both terminals. More formally:
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Definition 3.3.2 (AST path). An AST-path of length k is a sequence of the form:
n1d1...nkdknk+1, where n1, nk+1 ∈ T are terminals, for i ∈ [2..k]: ni ∈ N are nontermi-
nals and for i ∈ [1..k]: di ∈ {↑, ↓} are movement directions (either up or down in the
tree). If di =↑, then: ni ∈ δ (ni+1); if di =↓, then: ni+1 ∈ δ (ni). For an AST-path p,
we use start (p) to denote n1 — the starting terminal of p, and end (p) to denote nk+1

— its final terminal.

Using this definition we define a path-context as a tuple of an AST path and the
values associated with its terminals:

Definition 3.3.3 (Path-context). Given an AST Path p, its path-context is a triplet
⟨xs, p, xt⟩ where xs = ϕ (start (p)) and xt = ϕ (end (p)) are the values associated with
the start and end terminals of p.

That is, a path-context describes two actual tokens with the syntactic path between
them.

Example 3.3.4. A possible path-context that represents the statement: “x = 7;” would
be:

⟨x, (NameExpr ↑ AssignExpr ↓ IntegerLiteralExpr) , 7⟩

To limit the size of the training data and reduce sparsity, it is possible to limit
different parameters of the paths. Following earlier works, we limit the paths by maxi-
mum length — the maximal value of k, and limit the maximum width — the maximal
difference in child index between two child nodes of the same intermediate node. These
values are determined empirically as hyperparameters of our model.

3.4 Model

In this section we describe our model in detail. Section 3.4.1 describes the way the
input source code is represented, Section 3.4.2 describes the architecture of the neural
network, Section 3.4.3 describes the training process, and Section 3.4.4 describes the
way the trained model is used for prediction. Finally, Section 3.4.5 discusses some of
the model design choices and compares the architecture to prior art.

High-level view At a high-level, the key point is that a code snippet is composed of
a bag of contexts, and each context is represented by a vector whose values are learned.
The values of this vector capture two distinct notions: the semantic meaning of this
context, and the amount of attention this context should get.

The problem is as follows: given an arbitrarily large number of context vectors, we
need to aggregate them into a single vector. Two trivial approaches would be to learn
the most important one of them, or to use them all by vector-averaging them. These
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alternatives will be discussed in Section 3.5.2, and the results of implementing them
are shown in Table 3.4 (“hard attention” and “no-attention”) to yield poor results.

Our main insight in this work is that all context vectors should be used but the
model should be allowed to learn how much focus to give each vector. This is done by
learning how to average context vectors in a weighted manner. The weighted average
is obtained by weighting each vector by a factor of its dot product with another global
attention vector. The vector of each context and the global attention vector are trained
and learned simultaneously using the standard neural approach of backpropagation.
Once trained, the neural network is simply a pure mathematical function, which uses
algebraic operators to output a code vector given a set of contexts.

3.4.1 Code as a Bag of Path-Contexts

Our path-attention model receives as input a code snippet in some programming lan-
guage and a parser for that language.

Representing a snippet of code We denote by Rep the representation function
(also known as a feature function) which transforms a code snippet into a mathemat-
ical object that can be used in a learning model. Given a code snippet C and its
AST ⟨N, T, X, s, δ, ϕ⟩, we denote by TPairs the set of all pairs of AST terminal nodes
(excluding pairs that contain a node and itself):

TPairs (C) = {(termi, termj) |termi, termj ∈ termNodes (C) ∧ i ̸= j}

where termNodes is a mapping between a code snippet and the set of terminal nodes
in its AST. We represent C as the set of path-contexts that can be derived from it:

Rep (C) =

(xs, p, xt)

∣∣∣∣∣∣∣∣
∃(terms, termt) ∈ TPairs (C) :
xs = ϕ (terms) ∧ xt = ϕ (termt)
∧ start(p) = terms ∧ end(p) = termt


That is, C is represented as the set of triplets ⟨xs, p, xt⟩ such that xs and xt are values
of AST terminals, and p is the AST path that connects them. For example, the
representation of the code snippet from Figure 3.2a contains, among others, the four
AST paths of Figure 3.3.

3.4.2 Path-Attention Model

Overall, the model learns the following components: embeddings for paths and names
(matrices path_vocab and value_vocab), a fully connected layer (matrix W ), atten-
tion vector (a), and embeddings for the tags (tags_vocab). We describe our model
from left-to-right (Figure 3.4). We define two embedding vocabularies: value_vocab

and path_vocab, which are matrices in which every row corresponds to an embedding
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Figure 3.4: The architecture of our path-attention network. A fully connected layer
learns to combine embeddings of each path-context with itself; attention weights are
learned using the combined context vectors and used to compute a code vector. The
code vector is used to predict the label.

associated with a certain object:

value_vocab ∈ R|X|×d

path_vocab ∈ R|P |×d

where as before, X is the set of values of AST terminals that were observed during
training, and P is the set of AST paths. An embedding is looked up by simply picking
the appropriate row of the matrix. For example, if we consider Figure 3.2a again,
value_vocab contains rows for each token value such as boolean, target and Object.
path_vocab contains rows which are mapped to each of the AST paths of Figure 3.3
(without the token values), such as the red 1O path: Name ↑ FieldAccess ↑ Foreach ↓
Block ↓ IfStmt ↓ Block ↓ Return ↓ BooleanExpr. The values of these matrices are
initialized randomly and are learned simultaneously with the network during training.

The width of the matrix W is the embedding size d ∈ N – the dimensionality hyper-
parameter. d is determined empirically, limited by the training time, model complexity,
and the GPU memory, and it typically ranges between 100-500. For convenience, we
refer to the embeddings of both the paths and the values as vectors of the same size d,
but in general they can be of different sizes.

A bag of path-contexts B = {b1, ..., bn} that were extracted from a given code
snippet is fed into the network. Let bi = ⟨xs, pj , xt⟩ be one of these path-contexts, such
that {xs, xt} ∈ X are values of terminals and pj ∈ P is their connecting path. Each
component of a path-context is looked up and mapped to its corresponding embedding.
The three embeddings of each path-context are concatenated to a single context vector:
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ci ∈ R3d that represents that path-context:

ci = embedding (⟨xs, pj , xt⟩) =
[

value_vocabs ; path_vocabj ; value_vocabt

]
∈ R3d

(3.1)
For example, for the red 1O path-context from Figure 3.3, its context vector would

be the concatenation of the vectors of elements, the red 1O path, and true.

Fully connected layer Since every context vector ci is formed by a concatenation
of three independent vectors, a fully connected layer learns to combine its components.
This is done separately for each context vector, using the same learned combination
function. This allows the model to give a different attention to every combination
of paths and values. This combination allows the model the expressivity of giving a
certain path more attention when observed with certain values and less attention when
the exact same path is observed with other values.

Here, c̃i is the output of the fully connected layer, which we refer to as a combined
context vector, computed for a path-context bi. The computation of this layer can be
described simply as:

c̃i = tanh (W · ci)

where W ∈ Rd×3d is a learned weights matrix and tanh is the hyperbolic tangent func-
tion. The height of the weights matrix W determines the size of c̃i, and for convenience
is the same size (d) as before. In general, the height of W can be different; this will
affect the size of the final code vector. tanh is the hyperbolic tangent element-wise
function, a commonly used monotonic nonlinear activation function which outputs val-
ues in the range (−1, 1), which increases the expressiveness of the model. That is, the
fully connected layer “compresses” a context vector of size 3d into a combined context
vector of size d by multiplying it with a weights matrix, and then it applies the tanh

function to each element of the vector separately.

Aggregating multiple contexts into a single vector representation with at-
tention The attention mechanism computes a weighted average over the combined
context vectors, and its main job is to compute a scalar weight for each of them. An
attention vector a ∈ Rd is initialized randomly and learned simultaneously with the
network. Given the combined context vectors: {c̃1, ..., c̃n}, the attention weight αi of
each c̃i is computed as the normalized inner product between the combined context
vector and the global attention vector a:

attention weight αi = exp(c̃T
i · a)∑n

j=1 exp(c̃T
j · a)

The exponents in the equations are used only to make the attention weights positive,
and they are divided by their sum to have a sum of 1, as a standard softmax function.

46



The aggregated code vector υ ∈ Rd, which represents the whole code snippet, is
a linear combination of the combined context vectors {c̃1, ..., c̃n} factored by their
attention weights:

code vector υ =
n∑

i=1
αi · c̃i (3.2)

That is, the attention weights are non-negative and their sum is 1, and they are used
as the factors of the combined context vectors c̃i. Thus, attention can be viewed as
a weighted average, where the weights are learned and calculated with respect to the
other members in the bag of path-contexts.

Prediction Prediction of the tag is performed using the code vector. We define a tag
vocabulary which is learned as part of training:

tags_vocab ∈ R|Y |×d

where Y is the set of tag values found in the training corpus. As before, the embedding
of tagi is row i of tags_vocab. For example, looking at Figure 3.2a again, we see that
tags_vocab contains rows for each of contains, matches and canHandle. The predicted
distribution of the model q (y) is computed as the (softmax-normalized) dot product
between the code vector υ and each of the tag embeddings:

for yi ∈ Y : q (yi) = exp(υT · tags_vocabi)∑
yj∈Y exp(υT · tags_vocabj)

That is, the probability that a specific tag yi should be assigned to the given code
snippet C is the normalized dot product between the vector of yi and the code vector
υ.

3.4.3 Training

To train the network we use cross-entropy loss (Rubinstein, 1999, 2001) between the
predicted distribution q and the “true” distribution p. Since p is a distribution that
assigns a value of 1 to the actual tag in the training example and 0 otherwise, the
cross-entropy loss for a single example is equivalent to the negative log-likelihood of the
true label, and can be expressed as:

H (p||q) = −
∑
y∈Y

p (y) log q (y) = −log q (ytrue)

where ytrue is the actual tag that was seen in the example. That is, the loss is the
negative logarithm of q (ytrue), the probability that the model assigns to ytrue. As
q (ytrue) tends to 1, the loss approaches zero. The further q (ytrue) goes below 1, the
greater the loss becomes. Thus, minimizing this loss is equivalent to maximizing the
log-likelihood that the model assigns to the true labels ytrue.
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The network is trained using any gradient descent based algorithm and the standard
approach of back-propagating the training error through each of the learned parameters
(i.e., deriving the loss with respect to each of the learned parameters and updating the
learned parameter’s value by a small “step” towards the direction that minimizes the
loss).

3.4.4 Using the Trained Network

A trained network can be used to perform a downstream task, using the code vector υ

itself, and predict tags for new, unseen code.

Using the code vector An unseen code can be fed into the trained network exactly
as in the training step, up to the computation of the code vector (Eq. equation 3.2).
This code embedding can now be used in another deep learning pipeline for various
tasks such as finding similar programs, code search, refactoring suggestion, and code
summarization.

Predicting tags and names The network can also be used to predict tags and
names for unseen code. In this case we also compute the code vector υ using the
weights and parameters that were learned during training, and prediction is done by
finding the closest target tag:

prediction (C) = argmaxLP (L|C) = argmaxL {qυC (yL)}

where qυC is the predicted distribution of the model, given the code vector υC.

Scenario-dependant variants For simplicity, we describe a network that predicts
a single label, but the same architecture can be adapted for slightly different scenarios.
For example, in a multi-tagging scenario (Tsoumakas and Katakis, 2006), each code
snippet contains multiple true tags as in StackOverflow questions. Another example is
predicting a sequence of target words such as in method documentation. In the latter
case, the attention vector should be used to re-compute the attention weights after each
predicted token, given the previous prediction, as is commonly done in neural machine
translation (Bahdanau et al., 2014; Luong et al., 2015).

3.4.5 Design Decisions

Bag of contexts We represent a snippet of code as an unordered bag of path-
contexts. This choice reflects our hypothesis that the existence of path-contexts in
a method body is more significant than their internal location or order.

An alternative representation is to sort path-contexts according to a predefined
order (e.g., order of their occurrence). However, unlike natural language, there is no
predetermined location in a method where the main attention should be focused. An
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important path-context can appear anywhere in a method body (and span throughout
the method body).

Working with syntactic-only context The main contribution of this work is its
ability to aggregate multiple contexts into a fixed-length vector in a weighted manner
and use the vector to make a prediction. In general, our proposed model is not bound
to any specific representation of the input program; it can be applied in a similar way
to a “bag of contexts” in which the contexts are designed for a specific task, or it can be
applied to contexts that were produced using semantic analysis. Specifically, we chose
to use a syntactic representation that is similar to that of Alon et al. (2018) because
it was shown to be useful as a representation for modeling programming languages in
machine learning models. It was also shown to be more expressive than n-grams and
manually designed features.

An alternative approach is to include semantic relations as context. Such an ap-
proach was taken by Allamanis et al. (2018), who presented a Gated Graph Neural
Network in which program elements are graph nodes and semantic relations such as
ComputedFrom and LastWrite are edges in the graph. In their work, these semantic re-
lations were chosen and implemented for specific programming language and tasks. In
our work, we wish to explore how far a syntactic-only approach can go. Using seman-
tic knowledge has many advantages and might reveal information that is not clearly
expressed in a syntactic-only observation. However, using semantic knowledge comes
at a cost: (i) an expert is required to choose and design the semantic analyses; (ii)
generalizing to new languages is much more difficult, as the semantic analyses need to
be implemented differently for every language; and (iii) the designed analyses might
not easily generalize to other tasks. In contrast, in our syntactic approach (i) neither
expert knowledge of the language nor manual feature designing is required; (ii) general-
izing to other languages is accomplished by simply replacing the parser and extracting
paths from the new language’s AST using the same traversal algorithm; and (iii) the
same syntactic paths generalize surprisingly well to other tasks (as was shown by Alon
et al. (2018)).

Large corpus, simple model As Mikolov et al. (2013a) found for word represen-
tations, we found that a simpler model with a large amount of data is more efficient
than a complex model and a small corpus.

Some previous works decomposed the target predictions. Allamanis et al. (2016,
2015a) decomposed method names into smaller “sub-tokens” and used the continuous
prediction approach to compose a full name. Iyer et al. (2016) decomposed StackOver-
flow titles to single words and predicted them word-by-word. In theory, this approach
could be used to predict new compositions of names that were not observed in the
training corpus, referred to as neologisms (Allamanis et al., 2015a). However, when
scaling to millions of examples this approach might become cumbersome and fail to
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train well due to hardware and time limitations. As shown in Section 3.5.1, our model
yields significantly better results than previous models that used this approach.

Another disadvantage of subtoken-by-subtoken learning is that it requires a time-
consuming beam-search during prediction. This results in an orders-of-magnitude
slower prediction rate (the number of predictions that the model is able to make per
second). An empirical comparison of the prediction rate of our model and the models of
Allamanis et al. (2016) and Iyer et al. (2016) shows that our model achieves a roughly
200 times faster prediction rate than Iyer et al. (2016) and 10, 000 times faster than
Allamanis et al. (2016) (Section 3.5.1).

OoV prediction The other possible advantage of Allamanis et al. (2016)’s method
— the ability to produce out-of-vocabulary (OoV) predictions by means of a copy
mechanism and subtoken-by-subtoken decoding — offer only a negligible contribu-
tion. An analysis of our test data shows that the top-10 most frequent method names,
such as toString, hashCode and equals, which are typically easy to predict, appear in
less than 6% of the test examples. The 13% least occurring names are rare names,
which did not appear in their entirety in the training data, and are difficult or im-
possible to predict exactly even with a neologism or copy mechanism. One example
is imageFormatExceptionShouldProduceNotSuccessOperationResultWithMessage. How-
ever, when trained and evaluated on the same corpus as our model, less than 3% of
the predictions of each of these baselines were actually neologisms or OoV. Moreover,
in most of the cases where the baseline suggested a neologism or OoV, it could have
produced a more accurate prediction using only already seen target names.

We thus believe that our efforts would be better spent on the prediction of complete
names.

Granularity of path decomposition An alternative approach could decompose
the representation of a path to granularity of single nodes and learn to represent a
whole path node-by-node using a recurrent neural network (RNN). This would possibly
require less space but would also be more time consuming.

Furthermore, a statistical analysis of our corpus shows that more than 95% of the
paths in the test set were already seen in the training set. Accordingly, in the trade-off
between time and space we chose a slightly less expressive, more memory-consuming,
but fast-to-train approach. This choice leads to results that are as 95% as good as
our final results in only 6 hours of training, while significantly improving over previous
works. Despite our choice of time over space, training our model on millions of examples
fits in the memory of common GPUs.
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3.5 Evaluation

The main contribution of our method is its ability to aggregate an arbitrary sized
snippet of code into a fixed-size vector in a way that captures its semantics. Since Java
methods are usually short, focused, have a single functionality and a descriptive name,
a natural benchmark of our approach would consider a method body as a code snippet,
and use the produced code vector to predict the method name. Succeeding in this task
would suggest that the code vector has indeed accurately captured the functionality
and semantic role of the method.

Our evaluation aims to answer the following questions:

• How useful is our model in predicting method names, and how well does it measure
in comparison to other recent approaches (Section 3.5.1)?

• What is the contribution of the attention mechanism to the model? How well
would it perform using hard attention instead, or using no attention at all (Sec-
tion 3.5.2)?

• What is the contribution of each of the path-context components to the model
(Section 3.5.3)?

• Is it actually able to predict names of complex methods, or only of trivial ones
(Section 3.5.4)?

• What are the properties of the learned vectors? Which semantic patterns do they
encode (Section 3.5.4)?

Training process In our experiments we took the top 1M paths — those that oc-
curred the most in the training set. We used the Adam optimization algorithm (Kingma
and Ba, 2014), an adaptive gradient descent method commonly used in deep learning.
We used dropout (Srivastava et al., 2014) of 0.25 on the context vectors. The values
of all the parameters were initialized using the initialization heuristic of Glorot and
Bengio (2010). When training on a single Tesla K80 GPU, we achieved a training
throughput of more than 1000 methods per second. Therefore, a single training epoch
takes about 3 hours, and it takes about 1.5 days to completely train a model. Training
on newer GPUs doubles and quadruples the speed. Although the attention mechanism
can aggregate an arbitrary number of inputs, we randomly sampled up to k = 200
path-contexts from each training example. The value k = 200 seemed to be enough to
“cover” each method, since increasing to k = 300 did not seem to improve the results.

Datasets We wanted to evaluate the ability of the approach to generalize across
projects. We used a dataset of 10, 072 Java GitHub repositories, originally introduced
by Alon et al. (2018). Following recent work which found a large amount of code
duplication in GitHub (Lopes et al., 2017), Alon et al. (2018) used the top-ranked
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Table 3.2: Size of data used in the experimental evaluation.

Number of methods Number of files Size (GB)
Training 12,636,998 1,712,819 30
Validation 371,364 50,000 0.9
Test 368,445 50,000 0.9
Sampled Test 7,454 1,000 0.04

and most popular projects, in which duplication was observed to be less of a problem.
Additionally, they filtered out migrated projects and forks of the same project. While
it is possible that some duplications are left between the training and test set, in this
case the compared baselines could have benefited from them as well. In this dataset,
the files from all the projects were shuffled and split to 12, 636, 998 training, 371, 364
validation and 368, 445 test methods.

We trained our model on the training set and tuned hyperparameters on the vali-
dation set for maximizing F1 score. The number of training epochs was tuned on the
validation set using early stopping. Finally, we report results on the unseen test set.
A summary of the amount of data used is shown in Table 3.2.

Evaluation metric Ideally, we would have liked to manually evaluate the results,
but given that manual evaluation is very difficult to scale, we adopted the measure used
in previous works (Allamanis et al., 2016; Alon et al., 2018; Allamanis et al., 2015a),
which measured precision, recall, and F1 score over sub-tokens, case-insensitive. This
is based on the idea that the quality of a method name prediction depends mainly on
the sub-words used to compose it. For example, for a method called countLines, a
prediction of linesCount is considered as an exact match, a prediction of count has
full precision but low recall, and a prediction of countBlankLines has full recall but
low precision. An unknown sub-token in the test label (“UNK”) is counted as a false
negative, therefore automatically hurting recall.

While there are alternative metrics in the literature, such as accuracy and BLEU
score, they are problematic because accuracy counts even mostly correct predictions
as completely incorrect, and the BLEU score tends to favor short predictions, which
are usually uninformative. We provide a qualitative evaluation including a manual
inspection of examples in Section 3.5.4.

3.5.1 Quantitative Evaluation

We compare our model to two other recently proposed models that address similar
tasks:

CNN+attention — proposed by Allamanis et al. (2016) for prediction of method
names using CNNs and attention. This baseline was evaluated on a random sample
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Table 3.3: Evaluation comparison between our model and previous works.

Sampled Test Set Full Test Set
Model Precision Recall F1 Precision Recall F1
Allamanis et al. (2016) 47.3 29.4 33.9 - - -
Iyer et al. (2016) 27.5 21.5 24.1 33.7 22.0 26.6
Alon et al. (2018) - - - 53.6 46.6 49.9
code2vec (this work) 63.3 56.2 59.5 63.1 54.4 58.4

of the test set due to its slow prediction rate (Table 3.3). We note that the F1 score
reported here is lower than the original results reported in their paper, because we
consider the task of learning a single model that is able to predict names for a method
from any possible project. We do not make the restrictive assumption of having a per-
project model, able to predict only names within that project. The results we report
for CNN+attention are when evaluating their technique in this realistic setting. In
contrast, the numbers reported in their original work are for the simplified setting of
predicting names within the scope of a single project.

LSTM+attention — proposed by Iyer et al. (2016), originally for translation be-
tween StackOverflow questions in English and snippets of code that were posted as
answers and vice versa, using an encoder-decoder architecture based on LSTMs and
attention. Originally, they demonstrated their approach for C# and SQL. We used a
Java lexer instead of the original C#, and carefully modified it to be equivalent. We
re-trained their model with the target language being the methods’ names, split into
sub-tokens. Note that this model was designed for a slightly different task than ours:
translation between source code snippets and natural language descriptions, and not
specifically for prediction of method names.

Paths+CRFs — proposed by Alon et al. (2018), using a similar syntactic path
representation as this work, with CRFs as the learning algorithm. We evaluate our
model on their introduced dataset, and achieve a significant improvement in results,
training time and prediction time.

Each baseline was trained on the same training data as our model. We used their de-
fault hyperparameters, except for the embedding and LSTM size of the LSTM+attention
model, which were reduced from 400 to 100, to allow it to scale to our enormous train-
ing set while complying with the GPU’s memory constraints. The alternative was to
reduce the amount of training data, which achieved worse results.

Performance Table 3.3 shows the precision, recall, and F1 score of each model. The
model of Alon et al. (2018) seems to perform better than that of Allamanis et al. (2016)
and Iyer et al. (2016), while our model achieves significantly better precision and recall
than all of them.
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Figure 3.5: Our model achieves significantly better results than the baselines and in
shorter time.

Short and long methods The reported results are based on evaluation on all the
test data. Additionally evaluating the performance of our model with respect to the
length of a test method, we observe similar results across method lengths, with a natural
decrease in performance as the length increases. For example, the F1 score of one-line
methods is around 65; for two-to-ten lines 59; and for eleven-lines and more 52, while the
average method length is 7 lines. We used all the methods in the dataset, regardless of
their size. This shows the robustness of our model to the length of the methods. Short
methods have shorter names and their logic is usually simpler, while long methods
benefit from more context for prediction, but their names are usually longer, more
diverse and sparse, for example: generateTreeSetHashSetSpoofingSetInteger, which
has 17 lines of code.

Speed Figure 3.5 shows the test F1 score over training time for each of the evaluated
models. In just 3 hours, our model achieves results that are as 88% as good as its final
results, and in 6 hours results that are as 95% as good, with both being substantially
higher than the best results of the baseline models. Our model achieves its best results
after 30 hours.

Table 3.3 shows the approximate prediction rate of the different models. The syn-
tactic preprocessing time of our model is negligible but is included in the calculation.
As shown, due to their complexity and expensive beam search on prediction, the other
models are several orders of magnitude slower than ours, limiting their applicability.

Data efficiency The results reported in Table 3.3 were obtained using our full and
large training corpus, to demonstrate the ability of our approach to leverage enormous
amounts of training data in a relatively short training time. However, in order to in-
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Table 3.4: Comparison of model designs.

Model Design Precision Recall F1
No-attention 54.4 45.3 49.4
Hard attention 42.1 35.4 38.5
Train-soft, predict-hard 52.7 45.9 49.1
Soft attention 63.1 54.4 58.4
Element-wise soft attention 63.7 55.4 59.3

vestigate the data efficiency of our model, we also performed experiments using smaller
training corpora which are not reported in detail here. With 20% of the data, the F1
score of our model drops to only 50%. With 5% of the data, the F1 score drops only
to 30% of our top results. We do not focus on this series of experiments here: since
our model can process more than a thousand of examples per second, there is no real
reason to deliberately limit the size of the training corpus.

3.5.2 Evaluation of Alternative Designs

We experiment with alternative model designs, in order to understand the contribution
of each network component.

Attention As we refer to our approach as soft attention, we examine two other
approaches at the opposite extreme:

1. No-attention — in which every path-context is given an equal weight: the model
uses the ordinary average of the path-contexts rather than learning a weighted
average.

2. Hard attention — in which instead of focusing the attention “softly” over the
path-contexts, all the attention is given to a single path-context, i.e., the network
learns to select a single most important path-context at a time.

A new model was trained for each of these alternative designs. However, training
hard-attention neural networks is difficult, because the gradient of the argmax function
is zero almost everywhere. Therefore, we experimented with an additional approach:
train-soft, predict-hard, in which training is performed using soft attention (as in our
ordinary model), and prediction is performed using hard attention. Table 3.4 shows
the results of all the compared alternative designs. As seen, hard attention achieves
the lowest results. This concludes that when predicting method names, or in gen-
eral describing code snippets, it is more beneficial to use all the contexts with equal
weights than to focus on the single most important one. Train-soft, predict-hard im-
proves over hard training, and gains similar results to no-attention. As soft attention
achieves higher scores than all of the alternatives, both on training and prediction, this
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Table 3.5: Our model while hiding input components.

Path-context input Precision Recall F1
Full: ⟨xs, p, xt⟩ 63.1 54.4 58.4
Only-values: ⟨xs, __, xt⟩ 44.9 37.1 40.6
No-values: ⟨__, p, __⟩ 12.0 12.6 12.3
Value-path: ⟨xs, p, __⟩ 31.5 30.1 30.7
One-value: ⟨xs, __, __⟩ 10.6 10.4 10.7

experiment shows its contribution as a “sweet-spot” between no-attention and hard
attention.

Removing the fully-connected layer To understand the contribution of each com-
ponent of our model, we experiment with removing the fully connected layer (described
in Section 3.4.2). In this experiment, soft attention is applied directly on the context-
vectors instead of the combined context-vectors. This experiment resulted in the same
final F1 score as our regular model. Even though its training rate (training examples
per second) was faster, it took more actual training time to achieve the same results.
For example, it took 12 hours instead of 6 to reach results that are as 95% as good as
the final results, and a few more hours to achieve the final results.

Element-wise soft attention We also experimented with element-wise soft atten-
tion. In this design, instead of using a single attention vector a ∈ Rd to compute
the attention for the whole combined context vector c̃i, there are d attention vectors
a1, ..., ad ∈ Rd, and each of them is used to compute the attention for a different el-
ement. Therefore, the attention weight for element j of a combined context vector c̃i

is: attention weight αij = exp(c̃T
i ·aj)∑n

k=1 exp(c̃T
k
·aj) . This variation allows the model to compute

a different attention score for each element in the combined context vector, instead
of computing the same attention score for the whole combined context vector. This
model achieved an F1 score of 59.3 (on the full test set), which is even higher than our
standard soft attention model, but since this model gives different attention to different
elements within the same context vector, it is more difficult to interpret. Thus, this is
an alternative model that gives slightly better results at the cost of poor interpretability
and slower training.

3.5.3 Data Ablation Study

The contribution of each path-context element To understand the contribution
of each component of a path-context, we evaluate our best model on the same test set in
the same settings, except that one or more input locations is “hidden” and replaced with
a constant “UNK” symbol, such that the model cannot use this element for prediction.
As the “full” representation is referred to as: ⟨xs, p, xt⟩, the following experiments were
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(a) (b) (c)

Predictions
reverseArray 77.34%
reverse 18.18%
subArray 1.45%

Predictions
isPrime
isNonSingular
factorial

Predictions
sort 99.80%
bubbleSort 0.13%
shorten 0.02%

Figure 3.6: Example predictions from our model, with the top-4 paths that were given
the most attention for each code snippet. The width of each path is proportional to
the attention it was given by the model.

performed:

• “only-values” - using only the values of the terminals for prediction, without
paths, and therefore representing each path-context as: ⟨xs, __, xt⟩.

• “no-values” - using only the path: ⟨__, p, __⟩, without identifiers and keywords.

• “value-path” - allowing the model to use a path and one of its values: ⟨xs, p, __⟩.

• “one-value” - using only one of the values: ⟨xs, __, __⟩.

The results of these experiments are presented in Table 3.5. Interestingly, the “full”
representation (⟨xs, p, xt⟩) achieves better results than the sum of “only-values” and
“no-values”, without each of them alone “covering” for the other. This shows the
importance of using both paths and keywords, and letting the attention mechanism
learn how to combine them in every example. The poorer results of “only-values”
(compared to the full representation) show the importance of using syntactic paths.
As shown in the table, dropping identifiers and keywords hurt the model more than
dropping paths, but combining them achieves significantly better results. Better results
are obtained for “no-paths” than for “no-values”, and “single-identifiers” obtains the
worst results.

The poor results of “no-values” suggest that predicting names for methods with
obfuscated names is a much more difficult task. In this scenario, it might be more
beneficial to predict variable names as a first step using a model that was trained
specifically for this task, and then predict a method name given the predicted variable
names.
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3.5.4 Qualitative Evaluation

Interpreting Attention

Despite the “black-box” reputation of neural networks, our model is partially inter-
pretable thanks to the attention mechanism, which allows us to visualize the distribu-
tion of weights over the bag of path-contexts. Figure 3.6 illustrates a few predictions,
along with the path-contexts that were given the most attention in each method. The
width of each of the visualized paths is proportional to the attention weight that it was
allocated. We note that in these figures the path is represented only as a connecting
line between tokens, while in fact it contains rich syntactic information which is not
expressed properly in the figures. Figure 3.7 and Figure 3.8 portray the paths on the
AST.

The examples of Figure 3.6 are particularly interesting since the top names are
accurate and descriptive (reverseArray and reverse; isPrime; sort and bubbleSort)
but do not appear explicitly in the method bodies. The method bodies, and specifically
the path-contexts that were given the most attention, describe lower-level operations.
Suggesting a descriptive name for each of these methods is difficult and might take
time even for a trained human programmer. The average method length in our dataset
of real-world projects is 7 lines, and the examples presented in this section are longer
than this average length.

Figure 3.7 and Figure 3.8 show additional predictions of our model, along with the
path-contexts that were given the most attention in each example. The path-contexts
are portrayed both on the code and on the AST. An interactive demo of method
name predictions and name vector similarities can be found at: http://code2vec.org.
When manually examining the predictions of custom inputs, it is important to note
that a machine learning model learns to predict names for examples that are likely to
be observed “in the wild”. Thus, it can be misled by confusing adversarial examples
that are unlikely to be found in real code.

Semantic Properties of the Learned Embeddings

Surprisingly, the learned method name vectors encode many semantic similarities and
even analogies that can be represented as linear additions and subtractions. When
simply looking for the closest vector (in terms of cosine distance) to a given method
name vector, the resulting neighbors usually contain semantically similar names; e.g.
size is most similar to getSize, length, getCount, and getLength. Table 3.1 shows
additional examples of name similarities.

When looking for a vector that is close to two other vectors, we often find names
that are semantic combinations of the two other names. Specifically, we can look for
the vector v that maximizes the similarity to two vectors a and b:

argmaxv∈V (sim (a, v) ⊛ sim (b, v)) (3.3)
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Predictions:
count 42.77%
countOccurrences 33.74%
indexOf 8.86%

Figure 3.7: An example for a method name prediction, portrayed on the AST. The
top-four path-contexts were given a similar attention, which is higher than the rest of
the path-contexts.

Table 3.6: Semantic combinations of method names.

A +B ≈C
get value getValue
get instance getInstance
getRequest addBody postRequest
setHeaders setRequestBody createHttpPost
remove add update
decode fromBytes deserialize
encode toBytes serialize
equals toLowerCase equalsIgnoreCase
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Predictions:
done 34.27%
isDone 29.79%
goToNext 12.81%

Figure 3.8: An example for a method name prediction, portrayed on the AST. The
width of each path is proportional to the attention it was given.

Table 3.7: Semantic analogies between method names.

A : B C : D
open : connect close : disconnect
key : keys value : values
lower : toLowerCase upper : toUpperCase
down : onMouseDown up : onMouseUp
warning : getWarningCount error : getErrorCount
value : containsValue key : containsKey
start : activate end : deactivate
receive : download send : upload
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where ⊛ is an arithmetic operator used to combine two similarities, and V is a vocabu-
lary of learned name vectors, tags_vocab in our case. When measuring similarity using
cosine distance, Equation (3.3) can be written as:

argmaxv∈V (cos (a, v)⊛ cos (b, v)) (3.4)

Neither vec(equals) nor vec(toLowerCase) are the closest vectors to vec(equalsIgnoreCase)
individually. However, assigning a = vec (equals), b = vec (toLowerCase) and using
“+” as the operator ⊛, results in the vector of equalsIgnoreCase as the vector that
maximizes Equation (3.4) for v.

Previous work in NLP has suggested a variety of methods for combining similar-
ities (Levy and Goldberg, 2014b) for the task of natural language analogy recovery.
Specifically, when using “+” as the operator ⊛, as done by Mikolov et al. (2013b), and
denoting û as the unit vector of a vector u, Equation (3.4) can be simplified to:

argmaxv∈V

(
â + b̂

)
· v̂

since cosine distance between two vectors equals the dot product of their unit vectors.
This provides us with a simpler method for finding the above combination of method
name similarities:

vec (equals) + vec (toLowerCase) ≈ vec (equalsIgnoreCase)

This implies that the model has learned that equalsIgnoreCase is the most similar name
to equals and toLowerCase combined. Table 3.6 shows some of these examples.

Just as Mikolov et al. (2013a,c) used vector calculation to express syntactic and
semantic word analogies in NLP, the method name vectors learned by our model
also express similar syntactic and semantic analogies. For example, vec (download)-
vec (receive)+vec (send) results in a vector whose closest neighbor is the vector for
upload. This analogy can be read as: “receive is to send as download is to: upload”.
More examples are shown in Table 3.7.

3.6 Limitations of the code2vec model

In this section we discuss some limitations of our model and potential future research di-
rections. Some of these limitations will be solved by code2seq, which will be presented
in the next chapter.

Closed labels vocabulary One of the major limiting factors is the closed label
space we use as target: our model is able to predict only labels that were observed as
is at training time. This works very well for the vast majority of targets (that repeat
across multiple programs), but as the targets become very specific and diverse (e.g.,
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findUserInfoByUserIdAndKey) the model is unable to compose such names and usually
catches only the main idea (for example: findUserInfo). Overall, on a general dataset,
our model outperforms the baselines by a large margin even though the baselines are
technically able to produce complex names. code2seq solves this limitation by pre-
dicting a sequence of output symbols. This exact sequence was not necessarily seen at
training time.

Sparsity and Data-hunger There are three main sources of sparsity in our model:

• Terminal values are represented as whole symbols - e.g., each newArray and
oldArray is a unique symbol that has an embedding of its own, even though
they share most of their characters (Array).

• AST paths are represented as monolithic symbols - two paths that share most of
their AST nodes but differ in only a single node are represented as distinct paths
which are assigned distinct embeddings.

• Target nodes are whole symbols, even if they are composed of more common
smaller symbols.

This sparsity results in the model consuming a lot of trained parameters to keep
an embedding for each observed value. The large number of trained parameters results
in large GPU memory consumption at training time, increases the size of the stored
model (about 1.4 GB), and requires a lot of training data. Furthermore, modeling
source code with a finer granularity of atomic units may allow the model to represent
more unseen contexts as compositions of smaller atomic units, thus repeating more
atomic units across examples. In the model described in this work, paths, terminal
values or target values that were not observed during training cannot be represented.
To address these limitations we train the model on a huge dataset of more than 12M
examples, but the model might not perform as well using smaller datasets. Although
requiring a lot of GPU memory, training our model on millions of examples fits in the
memory of a relatively old Tesla K80 GPU.

An alternative approach for reducing the sparsity of AST paths is to use path
abstractions where only parts of the path are used in the context (abstracting away
certain kinds of nodes, merging certain kinds of nodes, etc.).

In code2seq, we solve all these sources of sparsity by decomposing terminals, paths,
and targets to smaller components. This significantly improves the results of the
code2seq model on both small and large datasets, while reducing the size of the stored
model by about 90%.

Dependency on variable names Since we trained our model on top-starred open-
source projects where variable naming is usually good, the model has learned to leverage
variable names to predict the target label. When given uninformative, obfuscated or
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adversarial variable names, the prediction of the label is usually less accurate. We
are considering several approaches to address this limitation in future research. One
potential solution is to train the model on a mixed dataset of good and hidden variable
names, hopefully reducing model dependency on variable names; another solution is to
apply a model that was trained for variable de-obfuscation first (such as (Alon et al.,
2018; Raychev et al., 2015)) and feed the predicted variable names into our model.
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Chapter 4

code2seq: Generating Sequences
from Structured Representations
of Code

4.1 Introduction

Modeling the relation between source code and natural language can be used for auto-
matic code summarization (Allamanis et al., 2016), documentation (Iyer et al., 2016),
retrieval (Allamanis et al., 2015b), and even generation (Balog et al., 2017; Rabinovich
et al., 2017; Yin and Neubig, 2017; Devlin et al., 2017; Murali et al., 2018; Brockschmidt
et al., 2019). In this work, we consider the general problem of generating a natural
language sequence from a given snippet of source code.

A direct approach is to frame the problem as a machine translation problem, where
the source sentence is the sequence of tokens in the code and the target sentence is
a corresponding natural language sequence. This approach allows one to apply state-
of-the-art neural machine translation (NMT) models from the sequence-to-sequence
(seq2seq) paradigm (Sutskever et al., 2014; Cho et al., 2014b; Bahdanau et al., 2014;
Luong et al., 2015; Vaswani et al., 2017), yielding state-of-the-art performance on vari-
ous code captioning and documentation benchmarks (Iyer et al., 2016; Allamanis et al.,
2016; Loyola et al., 2017) despite having extremely long source sequences.

We present an alternative approach for encoding source code that leverages the
syntactic structure of programming languages: code2seq. We represent a given code
snippet as a set of compositional paths over its abstract syntax tree (AST), where each
path is compressed to a fixed-length vector using LSTMs (Hochreiter and Schmidhuber,
1997). During decoding, code2seq attends over a different weighted average of the
path-vectors to produce each output token, much like NMT models attend over token
representations in the source sentence.

We show the effectiveness of our code2seq model on two tasks: (1) code summariza-
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Code summarization in Java: Code captioning in C#:

(a) (b)

Figure 4.1: Example of (a) code summarization of a Java code snippet, and (b) code
captioning of a C# code snippet, along with the predictions produced by our models.
The highlighted paths in each example are the top-attended paths in each decoding
step. Because of space limitations we included only the top-attended path for each
decoding step, but hundreds of paths are attended at each step.

tion (Figure 4.1a), where we predict a Java method’s name given its body, and (2) code
captioning (Figure 4.1b), where we predict a natural language sentence that describes
a given C# snippet.

On both tasks, our code2seq model outperforms models that were explicitly de-
signed for code, such as the model of Allamanis et al. (2016) and CodeNN (Iyer et al.,
2016), as well as TreeLSTMs (Tai et al., 2015) and state-of-the-art NMT models (Lu-
ong et al., 2015; Vaswani et al., 2017). To examine the importance of each component
of the model, we conduct a thorough ablation study. In particular, we show the im-
portance of structural encoding of code, by showing how our model yields a significant
improvement over an ablation that uses only token-level information without syntactic
paths. To the best of our knowledge, this is the first work to directly use paths in the
abstract syntax tree for end-to-end generation of sequences.

4.2 Representing Code as AST Paths

An Abstract Syntax Tree (AST) uniquely represents a source code snippet in a given
language and grammar. The leaves of the tree are called terminals, and usually refer
to user-defined values which represent identifiers and names from the code. The non-
leaf nodes are called nonterminals and represent a restricted set of structures in the
language, e.g., loops, expressions, and variable declarations. For example, Figure 4.2c
shows a partial AST for the code snippet of Figure 4.2a. Names (such as num) and types
(such as int) are represented as values of terminals; syntactic structures such as variable
declaration (VarDec) and a do-while loop (DoStmt) are represented as nonterminals.

Given the AST of a code snippet, we consider all pairwise paths between terminals,
and represent them as sequences of terminal and nonterminal nodes. We then use these
paths with their terminals’ values to represent the code snippet itself. For example,
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int countOccurrences(String str,
char ch) {

int num = 0;
int index = -1;
do {

index = str.indexOf(ch, index + 1);
if (index >= 0) {

num++;
}

} while (index >= 0);
return num;

}

(a)

int countOccurrences(String source,
char value) {

int count = 0;
for (int i = 0; i < source.length(); i++) {

if (source.charAt(i) == value) {
count++;

}
}
return count;

}

(b)

(c) (d)

Figure 4.2: An example of two Java methods that have exactly the same functional-
ity. Although these methods have different sequential (token-based) representations,
repeating paths, which might differ in only a single node (a ForStmt node instead of a
Do-while node), will be revealed if we consider syntactic patterns.

consider the two Java methods of Figure 4.2. Both of these methods count occurrences
of a character in a string. They have exactly the same functionality, although a different
implementation, and therefore different surface forms. If these snippets are encoded
as sequences of tokens, the recurring patterns that suggest the common method name
might be overlooked. However, a structural observation reveals syntactic paths that
are common to both methods, and differ only in a single node of a Do-while statement
versus a For statement. This example shows the effectiveness of a syntactic encoding
of code. Such an encoder can generalize much better to unseen examples because the
AST normalizes a lot of the surface form variance. Since our encoding is compositional,
the encoder can generalize even if the paths are not identical (e.g., a For node in one
path and a While in the other).

Since a code snippet can contain an arbitrary number of such paths, we sample k

paths as the representation of the code snippet. To avoid bias, k new paths are sampled
afresh in every training iteration. In Section 4.5 we show that this runtime-sampling
provides regularization and improves results compared to sampling the same k paths
for each example in advance.
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Formally, we use C to denote a given snippet of code. Every training iteration, k

pairs of terminals are uniformly sampled from within the AST of C. Each pair of termi-
nals

(
vi

1, vi
li

)
implies a single path between them: vi

1vi
2...vi

li
. Finally, the input code ex-

ample is represented as a set of these k random AST paths:
{(

v1
1v1

2...v1
l1

)
, ...,

(
vk

1vk
2 ...vk

lk

)}
,

where lj is the length of the jth path.

4.3 Model Architecture

Our model follows the standard encoder-decoder architecture for NMT (Section 4.3.1),
with the significant difference that the encoder does not read the input as a flat sequence
of tokens. Instead, the encoder creates a vector representation for each AST path
separately (Section 4.3.2). The decoder then attends over the encoded AST paths
(rather than the encoded tokens) while generating the target sequence. Our model is
illustrated in Figure 4.3.

4.3.1 Encoder-Decoder Framework

Contemporary NMT models are largely based on an encoder-decoder architecture (Cho
et al., 2014b; Sutskever et al., 2014; Luong et al., 2015; Bahdanau et al., 2014), where the
encoder maps an input sequence of tokens x = (x1, ..., xn) to a sequence of continuous
representations z = (z1, ..., zn). Given z, the decoder then generates a sequence of
output tokens y = (y1, ..., ym) one token at a time, hence modeling the conditional
probability: p (y1, ..., ym|x1, ..., xn).

At each decoding step, the probability of the next target token depends on the
previously generated token, and can therefore be factorized as:

p (y1, ..., ym|x1, ..., xn) =
m∏

j=1
p (yj |y<j , z1, ..., zn)

In attention-based models, at each time step t in the decoding phase, a context
vector ct is computed by attending over the elements in z using the decoding state ht,
typically computed by an LSTM.

αt = softmax (htWaz) ct =
n∑
i

αt
izi

The context vector ct and the decoding state ht are then combined to predict the
current target token yt. Previous work differs in the way the context vector is computed
and in the way it is combined with the current decoding state. A standard approach
(Luong et al., 2015) is to pass ct and ht through a multi-layer perceptron (MLP) and
then predict the probability of the next token using softmax:

p (yt|y<t, z1, ..., zn) = softmax (Wstanh (Wc [ct; ht]))
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Figure 4.3: Our model encodes each AST path with its values as a vector, and uses
the average of all of the k paths as the decoder’s start state. The decoder generates an
output sequence while attending over the k encoded paths.

4.3.2 AST Encoder

Given a set of AST paths {x1, ..., xk}, our goal is to create a vector representation zi

for each path xi = vi
1vi

2...vi
li

. We represent each path separately using a bi-directional
LSTM to encode the path, and sub-token embeddings to capture the compositional
nature of the terminals’ values (the tokens).

Path Representation Each AST path is composed of nodes and their child indices
from a limited vocabulary of up to 364 symbols. We represent each node using a learned
embedding matrix Enodes and then encode the entire sequence using the final states of
a bi-directional LSTM:

h1, ..., hl = LSTM(Enodes
v1 , ..., Enodes

vl
)

encode_path(v1...vl) = [h→l ; h←1 ]

Token Representation The first and last node of an AST path are terminals whose
values are tokens in the code. Following Allamanis et al. (2015a, 2016), we split code
tokens into subtokens; for example, a token with the value ArrayList will be decom-
posed into Array and List. This is somewhat analogous to byte-pair encoding in NMT
(Sennrich et al., 2016), although in the case of programming languages, coding conven-
tions such as camel notation provide us with an explicit partition of each token. We
use a learned embedding matrix Esubtokens to represent each subtoken, and then sum
the subtoken vectors to represent the full token:

encode_token(w) =
∑

s∈split(w)
Esubtokens

s
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The LSTM decoder may also predict subtokens at each step (e.g. when generating
method names), although the decoder’s subtoken embedding matrix will be different.

Combined Representation To represent the path x = v1...vl, we concatenate the
path’s representation with the token representations of each terminal node, and apply
a fully-connected layer:

z = tanh (Win [encode_path(v1...vl); encode_token(value(v1)); encode_token(value(vl))])

where value is the mapping of a terminal node to its associated value, and Win is a
(2dpath + 2dtoken) × dhidden matrix.

Decoder Start State To provide the decoder with an initial state, we average the
combined representations of all the k paths in the given example:

h0 = 1
k

k∑
i=1

zi

Unlike typical encoder-decoder models, the order of the input random paths is not
taken into account. Each path is encoded separately and the combined representations
are aggregated with mean pooling to initialize the decoder’s state. This represents the
given source code as a set of random paths.

Attention Finally, the decoder generates the output sequence while attending over
all of the combined representations z1, ...zk, similarly to the way that seq2seq models
attend over the source symbols. The attention mechanism is used to dynamically select
the distribution over these k combined representations while decoding, just as an NMT
model would attend over the encoded source tokens.

4.4 Experiments

We evaluate our model on two code-to-sequence tasks: summarization (Section 4.4.1),
in which we predict Java methods’ names from their bodies, and captioning (Sec-
tion 4.4.2), where we generate natural language descriptions of C# code snippets.
Although out of the focus of this work, in Section 4.4.3 we show that our model also
generates Javadocs more accurately than an existing work. We thus demonstrate that
our approach can produce both method names and natural language outputs, and can
encode a code snippet in any language for which an AST can be constructed (i.e., a
parser exists).

Setup The values of all of the parameters are initialized using the initialization heuris-
tic of Glorot and Bengio (2010). We optimize the cross-entropy loss (Rubinstein, 1999,
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2001) with a Nesterov momentum (Nesterov, 1983) of 0.95 and an initial learning rate
of 0.01, decayed by a factor of 0.95 every epoch. For the Code Summarization task, we
apply dropout (Srivastava et al., 2014) of 0.25 on the input vectors xj , and 0.7 for the
Code Captioning task because of the smaller number of examples in the C# dataset.
We apply a recurrent dropout of 0.5 on the LSTM that encodes the AST paths. We
used dtokens = dnodes = dhidden = dtarget = 128. For the Code Summarization task,
each LSTM that encodes the AST paths had 128 units and the decoder LSTM had
320 units. For the Code Captioning task, to support the longer target sequences, each
encoder LSTM had 256 units and the decoder was of size 512.

Choice of k We experimented with different values of k, the number of sampled
paths from each example (which we set to 200 in the final models). Lower values than
k = 100 showed worse results, and increasing to k > 300 did not result in consistent
improvement. In practice, k = 200 was found to be a reasonable sweet spot between
capturing enough information while keeping training feasible in the GPU’s memory.
Additionally, since the average number of paths in our Java-large training set is 220
paths per example, a number as high as 200 is beneficial for some large methods.

4.4.1 Code Summarization

In this task, we predict a Java method’s name given its body. As was previously
observed (Allamanis et al., 2016; Alon et al., 2019c), this is a good benchmark because
a method name in open-source Java projects tends to be succinct and precise, and a
method body is often a complete logical unit. We predict the target method name as a
sequence of sub-tokens, e.g., setMaxConnectionsPerServer is predicted as the sequence
“set max connections per server”. The target sequence length is about 3 on average.
We adopt the measure used by Allamanis et al. (2016) and Alon et al. (2019c), who
measured precision, recall, and F1 score over the target sequence, case insensitive.

Data We experiment with this task across three datsets. In these datasets, we always
train across multiple projects and predict on distinct projects:

Java-small – Contains 11 relatively large Java projects, originally used for 11 dis-
tinct models for training and predicting within the scope of the same project (Allamanis
et al., 2016). We use the same data, but train and predict across projects: we took 9
projects for training, 1 project for validation and 1 project as our test set. This dataset
contains about 700K examples.

Java-med – A new dataset of the 1000 top-starred Java projects from GitHub. We
randomly select 800 projects for training, 100 for validation and 100 for testing. This
dataset contains about 4M examples and we make it publicly available.

Java-large – A new dataset of the 9500 top-starred Java projects from GitHub that
were created since January 2007. We randomly select 9000 projects for training, 250
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for validation and 300 for testing. This dataset contains about 16M examples and we
make it publicly available.

Baselines We re-trained all of the baselines on all of the datasets of this task using
the original implementations of the authors. We compare code2seq to the following
baselines: Allamanis et al. (2016), who used a convolutional attention network to pre-
dict method names; syntactic paths with Conditional Random Fields (CRFs) (Alon
et al., 2018); code2vec (Alon et al., 2019c); and a TreeLSTM (Tai et al., 2015) en-
coder with an LSTM decoder and attention on the input sub-trees. Additionally, we
compared to three NMT baselines that read the input source code as a stream of to-
kens: 2-layer bidirectional encoder-decoder LSTMs (split tokens and full tokens) with
global attention (Luong et al., 2015), and the Transformer (Vaswani et al., 2017), which
achieved state-of-the-art results for translation tasks.

We put significant effort into strengthening the NMT baselines in order to provide a
fair comparison: (1) we split tokens to subtokens, as in our model (e.g., HashSet → Hash
Set) – this was shown to improve the results by about 10 F1 points (Figure 4.4); (2) we
deliberately kept the original casing of the source tokens since we found it to improve
their results; and (3) during inference, we replaced generated UNK tokens with the
source tokens that were given the highest attention. For the 2-layer BiLSTM we used
embeddings of size 512, an encoder and a decoder of 512 units each, and the default
hyperparameters of OpenNMT (Klein et al., 2017). For the Transformer, we used
their original hyperparameters (Vaswani et al., 2017). This resulted in a Transformer
model with 169M parameters and a BiLSTM model with 134M parameters, while our
code2seq model had only 37M.1

Performance Figure 4.4 shows the results for the code summarization task. Our
model significantly outperforms the baselines in both precision and recall across all
three datasets, demonstrating that there is added value in leveraging ASTs to encode
source code. Our model improves over the best baselines, BiLSTM with split tokens,
by between 4 to 8 F1 points on all benchmarks. BiLSTM with split tokens consistently
scored about 10 F1 points more than BiLSTM with full tokens, and for this reason we
included only the split token Transformer and TreeLSTM baselines. Our model outper-
forms ConvAttention (Allamanis et al., 2016), which was designed specifically for this
task; Paths+CRFs (Alon et al., 2018), which used syntactic features; and TreeLSTMs.
Although TreeLSTMs also leverage syntax, we hypothesize that our syntactic paths
capture long distance relationships while TreeLSTMs capture mostly local properties.
Examples for predictions made by our model and each of the baselines can be found in
Alon et al. (2019a) and at http://code2seq.org.

1We also trained versions of the NMT baselines in which we down-matched the sizes and number
of parameters to our model. These baselines seemed to benefit from more parameters, so the results
reported here are for the versions that had many more parameters than our model.
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Figure 4.4: Visualization of the F1 score of our model compared to the baselines, for
the code summarization task, across datasets. Our model achieves significantly higher
results than the baselines.

Fernandes et al. (2019) encoded code using Graph Neural Networks (GNN), and
reported lower performance than our model on Java-large without specifying the exact
F1 score. They report slightly higher results than us on Java-small only by extending
their GNN encoder with a subtoken-LSTM (BiLSTM+GNN→ LSTM); by extending
the Transformer with GNN (SelfAtt+GNN→SelfAtt); or by extending their LSTM
decoder with a pointer network (GNN→LSTM+Pointer). All these extensions can be
incorporated into our model as well.

Data Efficiency ConvAttention (Allamanis et al., 2016) performed even better than
the Transformer on the Java-small dataset, but could not scale and leverage the larger
datasets. Paths+CRFs showed very poor results on the Java-small dataset, which is
expected due to the sparse nature of their paths and the CRF model. When compared
to the best among the baselines (BiLSTM with split tokens), our model achieves a
relative improvement of 7.3% on Java-large, but as the dataset becomes smaller, the
larger the relative difference becomes: 13% on Java-med and 22% on Java-small; when
compared to the Transformer, the relative improvement is 23% on Java-large and 37%
on Java-small. These results show the data efficiency of our architecture: while the
data-hungry NMT baselines require large datasets, our model can leverage both small
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and large datasets.

Sensitivity to input length We examined how the performance of each model
changes as the size of the test method grows. As shown in Figure 4.5, our model is
superior to all examined baselines across all code lengths. All models give their best
results for short snippets of code, i.e., less than 3 lines. As the size of the input code
increases, all examined models show a natural descent, and show stable results for
lengths of 9 and above.

1 2 3 4 5 6 7 8 9 101112131415161718192021222324252627282930+
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Code length (lines)
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2-layer BiLSTMs
TreeLSTM

Transformer
code2vec

Figure 4.5: F1 score compared to the length of the input code. This experiment was
performed for the code summarization task on the Java-med test set. All examples
having more than 30 lines were counted as having 30 lines.

4.4.2 Code Captioning

For this task we consider predicting a full natural language sentence given a short
C# code snippet. We used the dataset of CodeNN (Iyer et al., 2016), which consists of
66,015 pairs of questions and answers from StackOverflow. They used a semi-supervised
classifier to filter irrelevant examples and asked human annotators to provide two ad-
ditional titles for the examples in the test set, making a total of three reference titles
for each code snippet. The target sequence length in this task is about 10 on aver-
age. This dataset is especially challenging as it is orders of magnitude smaller than the
code summarization datasets. Additionally, StackOverflow code snippets are typically
short, incomplete at times, and aim to provide an answer to a very specific question.
We evaluated using BLEU score with smoothing, using the same evaluation scripts as
Iyer et al. (2016).

Baselines We present results compared to CodeNN, TreeLSTMs with attention, 2-
layer bidirectional LSTMs with attention, and the Transformer. As before, we provide
a fair comparison by splitting tokens to subtokens, and replacing UNK during inference.
We also include numbers from baselines used by Iyer et al. (2016).
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Figure 4.6: Visualization of the BLEU score of our model compared to the baselines,
for the code captioning task. Our model achieves significantly higher results than the
baselines.

Results Figure 4.6 summarizes the results for the code captioning task. Our model
achieves a BLEU score of 23.04, which improves by 2.51 points (12.2% relative) over Co-
deNN, whose authors introduced this dataset, and over all the other baselines, including
BiLSTMs, TreeLSTMs and the Transformer, which achieved slightly lower results than
CodeNN. Examples for predictions made by our model and each of the baselines can
be found in Alon et al. (2019a). These results show that when the training examples
are short and contain incomplete code snippets, our model generalizes better to unseen
examples than a shallow textual token-level approach, thanks to its syntactic repre-
sentation of the data. Although TreeLSTMs also represent the data syntactically, the
TreeLSTM baseline achieved lower scores.

4.4.3 Code Documentation

Although the task of generating code documentation is outside the focus of this work,
we performed an additional comparison to Hu et al. (2018). They trained a standard
seq2seq model by using the linearized AST as the source sequence and a Javadoc natural
language sentence as the target sequence. While they originally report a BLEU score of
38.17, we computed their BLEU score using prediction logs provided us by the authors
and obtained a BLEU score of 8.97, which we find more realistic. Training our model
on the same dataset as Hu et al., matching LSTM sizes, and using the same script on
our predictions yields a BLEU score of 14.53, which is a 62% relative gain over the
model of Hu et al. (2018). This shows that our structural approach represents code
better than linearizing the AST and learning it as a sequence.
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Table 4.1: Variations on the code2seq model, performed on the validation set of Java-
med.

Model Precision Recall F1 ∆F1
code2seq (original model) 60.67 47.41 53.23
No AST nodes (only tokens) 55.51 43.11 48.53 -4.70
No decoder 47.99 28.96 36.12 -17.11
No token splitting 48.53 34.80 40.53 -12.70
No tokens (only AST nodes) 33.78 21.23 26.07 -27.16
No attention 57.00 41.89 48.29 -4.94
No random (sample k paths in advance) 59.08 44.07 50.49 -2.74

4.5 Ablation Study

To better understand the importance of the different components of our model, we
conducted an extensive ablation study. We varied our model in different ways and
measured the change in performance. These experiments were performed for the code
summarization task, on the validation set of the Java-med dataset. We examined
several alternative designs:

1. No AST nodes – instead of encoding an AST path using an LSTM, take only the
first and last terminal values to construct an input vector

2. No decoder – no sequential decoding; instead, predict the target sequence as a
single symbol using a single softmax layer.

3. No token splitting – no subtoken encoding; instead, embed the full token.

4. No tokens – use only the AST nodes without using the values associated with the
terminals.

5. No attention – decode the target sequence given the initial decoder state, without
attention.

6. No random – no re-sampling of k paths in each iteration; instead, sample in
advance and use the same k paths for each example throughout the training
process.

Table 4.1 shows the results of these alternatives. As seen, not encoding AST nodes
resulted in a degradation especially in the precision: a decrease of 5.16 compared to
4.30 for the recall. It is quite surprising that this ablation was still better than the
baselines (Figure 4.4): for example, the Transformer can implicitly capture pairs of
tokens using its self-attention mechanism. However, not all tokens are AST leaves.
By focusing on AST leaves, we increase the focus on named tokens, and effectively
ignore functional tokens like brackets, parentheses, semicolons, etc. Transformers can
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(in theory) capture the same signal, but perhaps they require significantly more layers
or a different optimization to actually learn to focus on those particular elements. The
AST gives us this information for free without having to spend more transformer layers
just to learn it. Additionally, for practical reasons we limited the length of the paths
to 9 . This leads to pairs of leaves that are close in the AST, but not necessarily close
in the sequence. In contrast, the Transformer’s attention is effectively skewed towards
sequential proximity because of the positional embeddings.

Using a single prediction with no decoder reduces recall by more than one-third.
This shows that the method name prediction task should be addressed as a sequential
prediction, despite the methods’ relatively short names. Using no token splitting or
no tokens at all drastically reduces the score, showing the significance of encoding
both subtokens and syntactic paths. Despite the poor results of no tokens, it is still
surprising that the model can achieve around half the score of the full model, as using
no tokens is equivalent to reasoning about code which has no identifier names, types,
APIs, and constant values, which can be very difficult even for a human. The no
attention experiment shows the contribution of attention in our model, which is very
close in its relative value to the contribution of attention in seq2seq models (Luong
et al., 2015; Bahdanau et al., 2014). The no random experiment shows the positive
contribution of sampling k different paths afresh on every training iteration, instead
of using the same sample of paths from each example during the entire training. This
approach provides data-level regularization that further improves an already powerful
model.
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Chapter 5

Structural Language Models of
Code

5.1 Introduction

Code completion is the problem of generating code given its surrounding code as con-
text. In its most general form, this problem is extremely challenging as it requires
reasoning over an unbounded number of syntactic structures and user-defined symbols.
Previous approaches have avoided this issue by limiting the generation problem: pro-
gram synthesis approaches are often tailored to domain-specific languages (Gulwani,
2011; Polozov and Gulwani, 2015; Devlin et al., 2017; Ellis et al., 2019), while other
recent approaches generate code in general languages like Java and C#, but severely
restrict the syntax, vocabulary, domain, or nature of the generated programs (Murali
et al., 2018; Brockschmidt et al., 2019; Young et al., 2019).

We introduce the task of any-code completion – generating code in a general-purpose
programming language without any restriction on its vocabulary or structure. Specif-
ically, we focus on generating code in context: given a program P and some part of
the program p, the task is to predict p from the rest of the program P−=P\p. Any-
code completion thus generalizes the restricted completion task of Brockschmidt et al.
(2019), in which the target code contained only primitive types (e.g., int and string)
and excluded user-defined functions. Figure 5.1 shows two any-code completion exam-
ples.

In related tasks such as semantic parsing (Dong and Lapata, 2018; Yu et al., 2018;
Iyer et al., 2019), natural-language-to-code (Allamanis et al., 2015b; Iyer et al., 2018),
and edit-to-code (Yin et al., 2019; Zhao et al., 2019), models must use separate encoders
and decoders because of the different modalities of the input (e.g. natural language
text) and the output (code). In contrast, we leverage the fact that our input and output
are of the same modality (code), and pursue better generalization by modeling them
jointly.

In Alon et al. (2020), we present a new approach that explicitly models the source
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public static Path[] stat2Paths(
FileStatus[] stats) {

if (stats == null) return null;
Path[] ret = new Path[stats.length];
for (int i = 0; i < stats.length; ++i){

ret[i] = ;
}
return ret;

}

public static string Camelize(
this string input)

{
var word = input.Pascalize();
return word.Length > 0 ?

.ToLower()
+ word.Substring(1)

: word;
}

True ref: stats[i].getPath()

SLM
top-5:�
(Java)

(25.2%) stats[i].getPath()
(3.3%) Path(stats[i])
(2.5%) new Path(stats[i], charset)
(1.7%) stat(stats[i], ret)
(0.8%) new Path(stats[i])

(a)

True ref: word.Substring(0, 1)

SLM
top-5:
(C#)

(14.1%) word.Substring(0, 1)
(8.2%) word.trim()
(5.8%) word.Substring(1)
(2.4%) input.Substring(0, 1)
(1.9%) wordValue.Substring(0, 1)

(b)

Figure 5.1: Examples from the Java (left) and C# (right) test sets. The highlighted ex-
pression in each example is the target p, which our models correctly generated from the
rest of the snippet. Additional and larger examples can be found in the supplementary
material.

and the target code as the same tree – structural language modeling (SLM). SLM
estimates the probability of the program’s abstract syntax tree (AST) by decomposing
it into a product of conditional probabilities over its nodes. We present a neural model
that computes these conditional probabilities by considering all AST paths leading to
a target node, generalizing over traditional language models that consider sequences
of words. While prior work uses AST paths to read programs (Alon et al., 2019c), we
generate code by predicting the next node along the set of paths, generating the target
AST node-by-node.

We evaluate SLMs on Java any-code completion, achieving a new state of the art:
exact-match accuracy@1 of 18.04% and accuracy@5 of 24.83% (previous SOTA: 16.93%
and 23.17%). SLMs also outperform existing models in the restricted completion task
of Brockschmidt et al. (2019) in C# by a wide margin, 37.61% accuracy@1 compared
to 26.42%. Our ablation study reveals the importance of joint modeling of the source
and target code, rather than separating encoders from decoders. Finally, we discuss the
theoretical advantages of SLMs, and show how they generalize many previous structural
approaches for code generation. An interactive demo of our model is presented at
http://AnyCodeGen.org.

5.2 Code Generation as Structural Language Modeling

We model the task of any-code completion by computing the probability of a pro-
gram Pr (P), similar to how a language model computes the probability of a natural
language sentence. While language models typically assume a sequence as their in-
put, our input is an abstract syntax tree AP . We thus introduce a structural language
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if( x > 1 ) {

...
}
...

(f)

Figure 5.2: The subtree representing x > 1 is generated given its surrounding tree. At
each step, the model generates the next node (denoted by ? ) of path1, path2 and path3
using the root path R. Dashed lines denote the AST structure; solid lines denote AST
paths. Most AST paths are omitted from the figure, for clarity.

modeling approach (SLM).
The intuition behind this idea is that a language model could generalize better by

modeling the tree rather than the sequential form of the program. Further, learning
from the AST allows a model to save learning capacity, instead of having to re-learn
known syntactic patterns from the text.

We first show a chain-rule decomposition of the tree’s probability Pr (AP) into a
product of conditional node probabilities, and then describe our path-based model for
computing the individual conditional probabilities. We explain how to construct a tree
from local node predictions, and finally discuss how our approach differs from previous
work on production-based tree generation.

Representing Code as a Tree A program P is a sequence of tokens that can
be unambiguously mapped to an abstract syntax tree (AST) AP , where every node
represents an element in the language (e.g. conditions, loops, variable declarations)
from a set T . Each AST leaf (terminal) has an associated user-defined value v ∈ V.
Nonterminal nodes can have a varying number of children nodes.

Decomposing the Probability of a Tree Given a tree AP , we first traverse the
tree, depth-first,1 to induce an ordering over its nodes a0, . . . , a|AP | ∈ AP . We de-

1Depth-first ordering is a common practice in tree generation (Maddison and Tarlow, 2014; Raychev
et al., 2016b), but in principle our framework also allows for other orderings.
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compose the probability of a tree Pr (AP) using the chain rule, akin to the standard
approach in language modeling:

Pr (AP) =
∏

t

Pr (at|a<t) (5.1)

where a<t are all the nodes that were traversed before at.
In any-code completion, part of the tree (AP−) is already observed. Therefore, we

order the nodes of AP− to be before the nodes of the target p, and compute only the
conditional probabilities over the nodes in p, essentially conditioning on the observed
tree AP− .

Representing Partial Trees via Paths How can we represent the partial tree
composed of a<t when computing Pr (at|a<t)? In standard language modeling, the
structure is linear, and a<t is a sequence. One way to represent a partial tree is to
linearize it according to the traversal order (Xiao et al., 2016); however, this creates
artificially long distances between the current node at and ancestor nodes (e.g., the
root a0). Another option is to use only the path from the root node to at (Rabinovich
et al., 2017), but this ignores a lot of contextual information (e.g., sibling nodes).

We follow Alon et al. (2018) and use the set of paths from every leaf to at to-
gether with the path from the root to at. Intuitively, each path captures the effect
of a different, possibly distant, program element on at, along with the syntactic rela-
tionship between them. For example, in Figure 5.1 (left) the three paths originating
from Path[] ret inform the model about the existence of ret which is an array of
type Path. Thus, when completing ret[i] = ... – the completion should be a Path
object. Other paths inform the model that the target is inside a For loop, iterated
stats.length times. Considering the information flowing from all paths, our model
correctly generates stats[i].getPath().

We denote the (candidate) node at time t as at, its (given) parent, which is currently
expanded, by π (at), and the set of all paths as St:

St = {ℓ⇝ π (at) |ℓ ∈ leaves (a<t)}

where ℓ⇝ π (at) is the (only) path in the tree between a leaf ℓ and the current node to
expand π (at). We denote the path from the root of the program as Rt = a0 ⇝ π (at),
which represents the current, relative position of π (at) in the program (marked as R in
Figure 5.2). Whereas prior work used whole paths (between two leaf nodes) to encode
ASTs (Alon et al., 2019a,c), our model observes partial paths (between a leaf and any
other node) and learns to extend them by predicting their next node.

Figure 5.2 illustrates the traversal order of a subtree that represents the expression
x > 1 and some of the paths used to compute the probability at each step. At each
step, the probability of the next node is computed given the paths St from the root
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and every given leaf up to the current node to expand. Figure 5.2d shows how after
the terminal node with the value x is given, path3 originating from this leaf is also used
to compute the probability of the next nodes.

Our path-based approach generalizes previous approaches such as “parent feeding”
and “previous action” encoding (Yin and Neubig, 2017), context nodes (Bielik et al.,
2016), and some of the graph-edges of Brockschmidt et al. (2019). See Section 5.8 for
further discussion.

Greater

Name IntExp

x
EOStok

1
EOStok

EOSnode

Figure 5.3: Augmenting
the AST with EOSnode and
EOStok nodes.

Generating Trees In sequence generation, the length
of the target sequence is controlled by generating an EOS
token to stop. When generating trees, we require a more
sophisticated mechanism to control arity and depth. We
augment AP in two ways to allow node-by-node generation.

First, we add a special EOSnode node to every nontermi-
nal to control for arity. Generating this node indicates that
the parent node has no more children nodes. Second, we
end each subtoken sequence with a special EOStok node to
control for depth during generation; we decompose each ter-
minal node nv into a sequence of terminal nodes Tv by split-
ting up the node’s value v into subtokens based on camel
notation. For example, if v = toLowerCase, then Tv = to → lower → case → EOStok.
Figure 5.3 shows an example of both EOSnode and EOStok in action.

Node Trees vs. Production Trees While we predict a single node at each step, pre-
vious work (Iyer et al., 2018, 2019) predicts a grammar production rule. This represen-
tation decomposes the code in a way that often forces the model to predict with partial
information. For instance, consider generating the expression str.Substring(3). The
model of Brockschmidt et al. (2019) would first predict the rule Expr→Expr.Substring(Expr),
and only then expand Expr→str and Expr→3. That is, the model needs to predict the
method name (Substring) before the invoking object (str). Further, the Substring
method can get either one or two arguments, forcing the model to choose whether to
use the one- or two-argument rule in advance. Node generation, however, allows us to
predict the presence of a function call and only then to predict its object and method
name, rather than predicting these a priori.

5.3 Model Architecture

In the previous section, we described how we can generate code given the probabilities
Pr (at|a<t), where a<t is represented by the set of partial AST paths St. Here, we
present a neural model that estimates Pr (at|St). We first encode each path in St as a
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vector (Section 5.3.1); then, we contextualize and aggregate the entire set. Finally, we
predict the target node at by combining a subtoken vocabulary with a syntactic copy
mechanism (Section 5.3.3).

5.3.1 Encoding AST Paths

Given a partial AST path, i.e., a sequence of nodes n1, . . . , nk, our goal is to create a
vector representation.

We first represent each node ni using embeddings. A subtoken node is represented
by the index of its subtoken w in the embedding matrix Esubtoken; AST nodes are
represented as a pair ni = (τ, κ) where τ is the node type, e.g. IfStatement, and κ

is the node index among its sibling nodes. We represent node types using a learned
embedding matrix Etype and the child indices using a learned matrix Eindex. The node’s
vector representation is the concatenation of the type and index vectors.

e (ni) =

Esubtoken
w ni is the subtoken w[

Etype
τ ; Eindex

κ

]
ni is the AST node (τ, κ)

We encode the entire path using a uni-directional LSTM stack, and take the final
states:2

⇝
f (n1, . . . , nk) = LSTM (e (n1) , . . . , e (nk))

Given a set of partial paths S (omitting the iterator t for simplicity), we denote
their encodings as H = {

⇝
f (n1, . . . , nk) | (n1, . . . , nk) ∈ S}.

Efficient Computation When modeling a subtree, there are large overlaps between
paths from different time steps. In particular, paths that originate from the same leaf
share the same prefix. We therefore apply the LSTM on the prefix once and cache the
intermediate state across suffixes, speeding up both training and inference significantly.
An example is shown in the supplementary material (Fig. 2).

5.3.2 Aggregating Multiple Paths

Given the set of paths S leading up to the parent π(a) of the target node a, our goal is
to represent S in the context of predicting a. To do so, we introduce the aggregation
function g (H, r, i). As its input, g takes the set of encoded paths H, the encoded root
path r, and the child index i of the currently predicted child node a relative to its
parent.

We first contextualize the path encodings H using a transformer encoder (Vaswani
et al., 2017).3 In parallel, we apply a non-linear transformation to the encoding of the

2Replacing the LSTMs with transformers yielded similar results in preliminary experiments.
3Since H is a set, we do not use positional embeddings.
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root path r =
⇝
f (R), in order to inform it that we wish to predict the i-th child of π(a):

Z = Transformer (H) r̃ = Wa · ReLU (Ci · r)

In this formulation, the parameter matrix Ci is used when the child index is i, while
the parameter matrix Wa is used for every instance.

We then compute attention over the set of contextualized path encodings Z using
the index-informed root-path encoding r̃ as the query; we pass the weighted average
z̃ and the root-path encoding r̃ through another fully-connected layer; we denote the
resulting vector representation as h̃:

α = softmax (Z · r̃) z̃ =
∑

j

αj · Zj (5.2)

h̃ = g (H, r, i) = ReLU (Wg [z̃; r̃])

where semicolons (;) denote vector concatenation.

5.3.3 Predicting with a Syntactic Copy Mechanism

We can now predict a from the representation h̃. If the target node’s parent π(a) is a
nonterminal AST node, then a must be an AST node; otherwise, a is a subtoken.

Predicting AST Nodes If a is an AST node, we predict a using a softmax over the
node type embeddings Etype:

Pr (a|S) = softmax
(
Etype · h̃

)
(π(a) is a nonterminal)

Predicting Subtokens Programs repeatedly refer to previously declared symbols,
resulting in highly repetitive usage of identifiers. We therefore use a copy mechanism
(Gu et al., 2016) to allow our model to predict either entire tokens or individual subto-
kens that exist in the context. As we show in Section 5.6, copying greatly improves
our model’s performance. For brevity, we describe how entire tokens are copied, and
elaborate on the copy of subtokens in the supplementary material. We score each leaf ℓ

using a bilinear function (Wc) between its path’s encoding Hℓ and h̃. At the same time,
we score the token w, which is the token associated with ℓ, from a limited vocabulary
using the inner product between its representation in the subtoken embedding matrix
Esubtoken and h̃.

scopy (ℓ) = Hℓ · Wc · h̃ sgen (w) = Esubtoken
w · h̃

The scores scopy and sgen are then summed over all occurrences that correspond to the
same symbol and subsequently normalized via softmax.
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A key difference from most previous work (Ling et al., 2016; Yin and Neubig, 2017) is
that our copy mechanism uses the syntactic relation to the source (the path Hℓ), rather
than the sequential relation or the graph-node representation (Yin et al., 2019).

5.4 Experimental Setup

5.4.1 Benchmarks

Any-Code Completion: Java We take the Java-small dataset of Alon et al. (2019a),
which is a re-split of the dataset of Allamanis et al. (2016). It contains 11 GitHub
projects, broken down into a single method per example, and split to train/dev/test
by project to reduce code overlap. This dataset was found to contain the least code
duplication by Allamanis (2018b). We create any-code completion examples by select-
ing every expression larger than a single AST node as the target, using the remainder
of the method as the context. We remove methods containing the word “test” in their
body or file name, and omit 10% of the examples by filtering out methods longer than
20 lines to avoid configurations, initializations, and auto-generated code. To make the
task even harder, we remove examples where the target appears as-is in the context.
Ultimately, this dataset contains 1.3M/10k/20k train/dev/test examples.

Restricted Completion: C# To provide a fair comparison to Brockschmidt et al.
(2019), we create an additional benchmark where the missing code is more limited. We
use the code of Brockschmidt et al. (2019) which filters out examples where the targets
contain non-primitive types or user-defined functions. We extract the exact same types
of limited expressions. Since the dataset of Brockschmidt et al. (2019) is not publicly
available, we consulted with Brockschmidt et al. directly and extracted examples from
the raw dataset of Allamanis et al. (2018) using their “unseen projects test” set. This
dataset contains 30 GitHub projects broken down to one method per example. This
dataset contains 16k/8k/3k train/dev/test examples.

Our datasets are available at: http://github.com/tech-srl/slm-code-generation/.
Detailed statistics are provided in the supplementary material.

Metrics Following Brockschmidt et al. (2019), we report exact match accuracy at 1
and 5. We also introduce a new tree@k metric which counts a prediction as correct if
the entire tree structures, ignoring leaf values, are identical. For example, x > 1 and
y > 2 would not count as identical in exact match, but would count as “tree-match
identical” because both express that an identifier is greater than an integer (NAME >
INT). The tree@k metric is interesting because it allows us to tease apart the model’s
syntactic errors from incorrect subtoken predictions.
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Model acc@1 acc@5 tree@1 tree@5
code2seq (Alon et al., 2019a) 10.68 15.56 30.46 43.94
Iyer et al. (2018) 5.94 9.19 25.54 36.75
seq2prod (Yin and Neubig, 2017) 8.05 11.82 30.77 41.73
Transformersmall (Vaswani et al., 2017)+copy 14.23 21.35 31.83 47.40
Transformerbase (Vaswani et al., 2017)+copy 16.65 24.05 34.68 50.52
BiLSTM→LSTM (Luong et al., 2015)+copy 16.93 23.17 34.29 49.72
seq2tree (Aharoni and Goldberg, 2017)+copy 16.81 23.04 38.14 52.36
SLM (this work) 18.04 24.83 39.10 55.32

Table 5.1: Results on any-code completion in Java.

5.4.2 Baselines

We compare our model to a variety of original implementations and adaptations of
existing models. We put significant effort to perform a fair comparison, including
adding a copy mechanism to the NMT baselines and subtokenization as in our model.
We adapt strong baselines from the literature to our task, even if they were designed to
different tasks such as NL→code and code→NL. We re-train all the following baselines
on the same datasets as our models.

NMT We use standard autoregressive sequence-to-sequence NMT baselines, in which
we subtokenize the given code snippet, replace the target in the source with a special
PRED symbol, and train the network to predict the target as a sequence of subtokens.
Transformerbase+copy (Vaswani et al., 2017) uses the implementation of OpenNMT
(Klein et al., 2017) with a copy mechanism (Gu et al., 2016). Transformersmall+copy
uses dmodel=256, dff=1024, and 4 self attention heads per layer. BiLSTM→LSTM+copy
is a 2-layer bidirectional LSTM encoder-decoder with d=512 and attention. seq2tree+copy
follows Aharoni and Goldberg (2017) and learns to generate the linearized, subtokenized
target AST.

Java-specific Baselines We use the original implementation of Iyer et al. (2018),
and also their seq2prod baseline which is a re-implementation of Yin and Neubig (2017);
these are designed for NL→code tasks, in which we feed the code context as the NL
input. The model of Iyer et al. (2018) is designed to get additional input of the available
variables and their types, for which we do not feed types. While these models could
also be applied to other languages, their implementation only supports Java.

C#-specific Baselines We compare our model to the graph-based GNN→NAG
model using the implementation of Brockschmidt et al. (2019). Bielik et al. (2016)
kindly trained and tested their non-neural PHOG model on our C# dataset. We note
that PHOG does not have an explicit copy mechanism, and considers only context
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to the left of the target code, while we consider also context to the right. Extending
PHOG could potentially improve its results.

In both Java and C#, we compare to code2seq (Alon et al., 2019a), which is a strong
code→NL model. We train it to generate the target code as a sequence of subtokens.

5.4.3 Implementation and Hyperparameter Settings

Architecture We use embeddings of size 512, 2 layers of LSTMs with 256 units, and
4 transformer layers with 8 attention heads. We kept a small subtoken vocabulary of
size 1000 to encourage the model to learn to copy; larger vocabularies did not show
an improvement. These resulted in a very lightweight model of only 15M parameters,
which is close to Transformersmall (11.8M parameters). In comparison, Transformerbase

had more than 45M parameters (3× more parameters than our model).

Training We train the model end-to-end on a single V100 GPU, using cross entropy
and the Adam optimizer (Kingma and Ba, 2014), an initial learning rate of 10−4 multi-
plied by 0.95 every 20k steps. We bucket examples based on the number of predictions
in the target subtree (nodes + subtokens + EOS), and vary the batch size such that
each batch contains about 512 targets. We train the model to prefer copying entire
tokens rather than copying subtokens, if possible, by optimizing for the entire token as
the true label. We apply dropout of 0.25 in the Transformer layers, and a recurrent
dropout of 0.5 in the LSTMs.

Inference We perform beam search with width of 5 and optimize for accuracy@1.

Model acc@1 acc@5 tree@1 tree@5
GNN→NAG 15.19 27.05 26.48 40.09
code2seq 6.20 10.05 21.97 30.89
seq2seq+copy 26.42 37.94 34.10 49.23
seq2tree+copy 22.29 35.86 31.85 48.53
PHOG 7.40 12.00 – –
SLM (this work) 37.61 45.51 51.10 59.82

Table 5.2: Results on restricted completion in C#.

5.5 Results

Any-Code Completion: Java Table 5.1 shows that our SLM achieves over 1.1%
and 0.78% better acc@1 and acc@5 (respectively) over the two strongest baselines.
The improvement over Transformersmall, which is closer to our model in the number of
parameters, is even higher: over 3.8% and 3.4% in acc@1 and acc@5.
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Ablation acc@1 acc@5 tree@1 tree@5
Paths→Seq 12.95 18.52 33.44 43.43
Seq→Path 12.12 17.12 28.68 43.99
Paths→Paths 17.63 24.62 37.78 53.98
No Root Att 14.43 18.48 28.20 35.65
No Copy 10.72 15.70 30.61 44.35
SLM (original) 18.04 24.83 39.10 55.32

Table 5.3: Ablations on any-code completion in Java.

The NMT baselines performed better than code-specific baselines. We hypothesize
that the reason is that the NMT baselines are more generic, while the code-specific
baselines are designed for different tasks: seq2prod is designed for tasks which involve
generating code given natural language input; Iyer et al. (2018) additionally expects
all member methods, fields, and their types as input; code2seq is designed to generate
sequences rather than code, and does not have a copy mechanism. An approximation
of code2seq with a copy mechanism is presented in Section 5.6.

Interestingly, the syntactically-informed seq2tree baseline achieved the highest tree@k
among the baselines, while our model achieved higher acc@k and tree@k. This shows
that leveraging the syntax can benefit NMT models as well.

Restricted Completion: C# Table 5.2 shows the results for the restricted com-
pletion task in C#, where seq2seq+copy is the BiLSTM→LSTM+copy model which
performed the best among the Java baselines. We first observe that the seq2seq+copy
and the seq2tree+copy baselines outperform the GNN→NAG of Brockschmidt et al.
(2019), who introduced this task. Although Brockschmidt et al. (2019) did compare
to a seq2seq baseline, their GNN→NAG model could copy symbols from the context,
but their baseline did not. To conduct a fair comparison with our SLM model, we
equipped the seq2seq and seq2tree baselines with a copy mechanism. Even though
the seq2seq+copy and the seq2tree+copy baselines perform substantially better than
the state of the art in this setting, our SLM model is able to go beyond, achieving
significant gains over all models.

The superiority of our model over GNN→NAG may also be related to the GNN
bottleneck (Alon and Yahav, 2021), which hinders GNNs from propagating long-range
messages. In contrast, propagating long-range messages using paths is natural for our
model.

5.6 Ablation Study

To understand the importance of the various components and design decisions in our
model, we conducted an extensive ablation study.
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Paths→Seq follows code2seq (Alon et al., 2019a) and separates the model to an
encoder and a decoder, where the decoder generates the target code as a sequence
of subtokens. The main difference from code2seq is that Paths→Seq includes a copy
mechanism, as in our model.

Seq→Path follows Rabinovich et al. (2017) and separates our model to an encoder
and a decoder (including a copy mechanism), where the encoder encodes the context
as a sequence of subtokens using a BiLSTM, and the decoder generates the missing
subtree using the root path and the index of the generated child.

Paths→Paths is similar to our SLM model except that it uses separate encoder
and decoder. These encoder and decoder have untied weights, unlike our SLM model
which models the source and the target jointly.

No Root Attention uses max pooling instead of attention in aggregating multiple
paths (see Section 5.3.2). The index-informed path from the root to the target’s parent
(R in Figure 5.2) is concatenated with the result, instead of being used as attention
query.

No Copy replaces copy mechanism with a much larger vocabulary (25k subtokens
instead of 1k).

Results Table 5.3 shows the results of these alternatives. As our SLM model performs
better than Paths→Paths, this ablation shows the importance of joint modeling of the
context and the target subtree by parameter tying.

Each of Paths→Paths and the seq2seq baselines (Table 5.1) performs better than
Paths→Seq and Seq→Path; this shows the importance of using the same type of encoder
and decoder for any-code completion, rather than combining “an optimal encoder”
with “an optimal decoder”. While this distinction between encoder and decoder types
might be necessary for semantic parsing (Rabinovich et al., 2017; Dong and Lapata,
2018), NL→code (Yin and Neubig, 2017) and code→NL (Alon et al., 2019a; Fernandes
et al., 2019) tasks because of the different modalities of the input and the output, this
discrepancy may hurt generalization when the output is essentially a missing part of
the input’s AST.

Paths→Paths performs better than the seq2seq baselines (Table 5.1), showing the
advantage of using paths over textual sequences, even without parameter tying.

No Root Attention degrades acc@1 and acc@5 by 3.6% to 6.3%. This shows that
dynamically attending to the context paths given the current root path is crucial.

Not using a copying mechanism results in a degradation of 7.3% to 9.1%. Programs
use symbols and identifiers repetitively, thus the ability to copy symbols from the
context is crucial for this task. For this reason, we included a copying mechanism in
all NMT baselines in Section 5.4.

5.7 Qualitative Analysis
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private static void log(String value) {
if (value != null

&& )
value = value.substring(0, 55)+"...";

LOG.info(value);
}

True ref: value.length() > 55

SLM
top-5:

value.length() > 0
value.length() > 55 ✓
value.startsWith("...")
!value.startsWith("...")
value.charAt(0) == '.'

(a)

public int compareTo(LongWritable o) {
long thisValue = this.value;
long thatValue = o.value;
return (thisValue < thatValue ? -1 :

( ));
}

thisValue == thatValue ? 0 : 1

thisValue == thisValue ? 0 : 1
thisValue == thatValue ? 0 : 1 ✓
thisValue == value ? 0 : 1
thisValue > thatValue ? 0 : 1
(thisValue == thatValue) ? 0 : 1 ↔

(b)

Figure 5.4: Examples for cases where the top candidate is a “tree-match” (marked
with ), but only the second candidate is an “exact match” (marked with ✓ in bold).
Predictions that are logically equivalent to the ground truth are marked with ↔.

Our main results (Table 5.1 and Table 5.2) reveal a gap between acc@k and tree@k:
when ignoring identifier values and comparing only the tree structure, accuracy is
significantly higher across all models. While our SLM model performs better than
all baselines in acc@k, our model also shows greater potential for improvement in its
tree@k results, which are much higher than the baselines’. We thus focus on studying
the cases where the tree was predicted correctly, but the model failed to generate the
code exactly including names.

Figure 5.4a shows an example of this case: the ground truth has a structure of
the form: NAME.NAME() > INT. Our model predicts value.length() > 0 (a tree-match)
as its first candidate and value.length() > 55 (the ground truth) as its second. Null-
checking a string is often followed by checking that it is also not empty, making the
first candidate a reasonable prediction as well.

Figure 5.4b shows another example: in this case, the ground truth thisValue ==
thatValue ? 0 : 1 was predicted correctly only as the second candidate. Nevertheless,
the top-3 candidates are tree-matches since all of them are of the form: NAME == NAME
? INT : INT. Interestingly, the fifth candidate (thisValue == thatValue) ? 0 : 1 is
logically-equivalent to the ground truth.

In both examples, our model’s top candidate differs from the ground truth by a sin-
gle identifier or literal: in Figure 5.4a the model predicted 0 instead of 55; in Figure 5.4b
the model predicted thisValue instead of thatValue. Such single subtoken errors are
responsible for 30% of the cases where the model’s top prediction is a tree-match but
not an exact match. Single token (whole identifier or literal) mismatches are respon-
sible for 74% of these cases. Thus, improving our model’s ability to predict the right
names has the potential to enhance our gains furthermore. Detailed results of allowing
such mistakes in our model and in the baselines can be found in the supplementary
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public float getProgress() {
this.readLock.lock();
try {

if (this.currentAttempt != null) {
return ;

}
return 0;

} finally {
this.readLock.unlock();

}
}

True ref: this.currentAttempt.getProgress()

SLM top-5:

(31.3%) this.currentAttempt.getCount()
(30.6%) -1
(1.5%) this.currentAttempt.get()
(1.2%) this.currentAttempt.getTime()
(0.9%) this.currentAttempt.getProgress() ✓

Figure 5.5: An example from our test set in which a compiler-guided generation could
filter out non-compiling candidates, and thus rank the ground truth second instead
of fifth. Four out of the five candidates are “tree-match” (marked with ), the fifth
candidate is an “exact match” (marked with ✓ in bold), and only the second and the
fifth candidate compile (marked with ).

material.
Additional possible post-filtering could filter out candidates that do not compile.

In Figure 5.5, the first, third and fourth candidates do not compile, because the
this.currentAttempt object does not have getCount, get, nor getTime methods. If
the model’s predictions would have been considered in the context of the entire project
including its dependencies, these candidates could have been filtered out, and the (cor-
rect) fifth candidate would be ranked second. We leave compiler-guided code generation
to future work.

Additional examples can be found in the supplementary material and in our inter-
active demo at http://AnyCodeGen.org.

5.8 Related Work

Generalizing Previous Approaches Our approach frames code generation as pre-
dicting the next node in all partial AST paths. This simple framing generalizes most
previous work, without hand-crafted edges and special actions:
• Models that use information about ancestor nodes only (Rabinovich et al., 2017),

as well as the “Parent Feeding” of Yin and Neubig (2017), are generalized by our
model, since all paths that go into a node at pass through its parent, and the path
from the root is the attention query.

• The “previous action encoding” of Yin and Neubig (2017) is also a special case of
our approach, because St contains the paths starting from the previously expanded
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leaves of Ap into the currently expanded node π (at), such as path3 in Figure 5.2e.
• The “context node” of PHOG (Bielik et al., 2016) is just one of the previously-

traversed leaf nodes in a<t. Thus, not only that our model conditions on this
context node as well, our model also takes into account the syntactic relation, i.e.,
the path, between the context and π (at). Moreover, while PHOG conditions on a
single leaf, SLMs condition on every leaf in a<t.

• Finally, Brockschmidt et al. (2019) define special graph edges (e.g., “NextSib” and
“Child”) to capture relations on the AST. Allamanis et al. (2018) further defines
data-flow and control-flow graph edges such as “ComputedFrom” and “Guard-
edByNegation”. Most of these relations can be expressed as partial AST paths
without manually designing them.

Program Generation Learning to generate programs is one of the oldest problems
in machine learning (Waldinger and Lee, 1969) and has been considered by some as
the “holy grail of computer science” (Pnueli and Rosner, 1989; Gulwani et al., 2017).
Typically, the task is to generate a program given some form of input or context, such as
complete formal specifications (Green, 1981; Si et al., 2019) or input-output examples
(Gulwani, 2011; Devlin et al., 2017; Parisotto et al., 2017; Balog et al., 2017; Gaunt
et al., 2017).

While these approaches work well in some cases, they are often bounded to DSLs
that prevent them from being applied to realistic, general-purpose code.

Bielik et al. (2016) learn a dynamic DSL expression that points to a single context
that guides the generation of a JavaScript program. Maddison and Tarlow (2014) and
Amodio et al. (2017) generate general-purpose unconditional code, and do not deal
with the challenge of fitting the code to a given context.

Brockschmidt et al. (2019) addressed a similar code completion task as ours using
a graph encoder and a neural attribute grammar decoder. However, they limit their
model to generate only primitive types or arrays of these; use a closed vocabulary;
and omit user-defined functions. In this work, we lift these constraints and allow any,
general-purpose, generation of code, of all types and containing any names. As we show
in Section 5.5, our model performs significantly better.

Murali et al. (2018) generate code given a set of APIs in a ”Java-like” language;
they state that their approach is thus intrinsically limited to generate only API-heavy
programs. Yin et al. (2019) generate general-purpose code by applying a given edit to
a given code snippet. Brody et al. (2020) predict code edits directly given other edits
that occurred in the context. Yin and Neubig (2017) and Rabinovich et al. (2017) used
a top-down syntactic approach for generating general-purpose code given a natural
language description. Models that address APIs→code, edit→code, or NL→code tasks
must model the input separately and differently from the output code. As we show in
Section 5.6, modeling the source and the target differently perform poorly in our task,
in which the input is code as well.
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Chen et al. (2018b) addressed JavaScript↔CoffeeScript translation with a tree-to-
tree approach, which required a strong alignment between the source and target trees.
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Chapter 6

Limitations of Graph Neural
Networks

While studying different representations of code, we noticed that graph neural net-
works, although very versatile and popular, fail to learn long-range patterns in the
training data. When trained on programming tasks that depend on long-range inter-
actions, we found that GNNs usually overfit short-range artifacts in the data. This
phenomenon was surprising, because AST paths had no problem learning long-range
signals. Searching through the literature, it turned out that since the proposal of the
GNNs (Gori et al., 2005; Scarselli et al., 2008), their struggle to propagate information
between distant nodes in the graph was one of the major problems in training GNNs.
In Section 6.1 we propose a new explanation for this problem: GNNs are susceptible
to a bottleneck when aggregating messages across a long path. This bottleneck causes
the over-squashing of exponentially growing information into fixed-size vectors.

Further, we found that Graph Attention Networks (GATs), which are one of the
most popular GNN architectures and are considered as the state-of-the-art architecture
for representation learning with graphs, can only compute a restricted kind of attention
where the ranking of attended nodes is unconditioned on the query node. In Section 6.2,
we formally define this restricted kind of attention as static attention and distinguish
it from a strictly more expressive dynamic attention. To remove this limitation, we
introduce a simple fix by modifying the order of operations and propose GATv2: a
dynamic graph attention variant that is strictly more expressive than GAT.

6.1 The Bottleneck of Graph Neural Networks and the
Over-squashing Phenomenon

Graph neural networks (GNNs) (Gori et al., 2005; Scarselli et al., 2008; Micheli, 2009)
have seen sharply growing popularity over the last few years (Duvenaud et al., 2015;
Hamilton et al., 2017; Xu et al., 2019). GNNs provide a general framework to model
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Bottleneck

input sequence

(a) The bottleneck of RNN seq2seq models

Bottleneck

(b) The bottleneck of graph neural networks

Figure 6.1: The bottleneck that existed in RNN seq2seq models (before attention)
is strictly more harmful in GNNs: information from a node’s exponentially-growing
receptive field is compressed into a fixed-size vector. Black arrows are graph edges; red
curved arrows illustrate information flow.

complex structural data containing elements (nodes) with relationships (edges) between
them. A variety of real-world domains such as social networks, computer programs,
chemical and biological systems can be naturally represented as graphs. Thus, many
graph-structured domains are commonly modeled using GNNs.

A GNN layer can be viewed as a message-passing step (Gilmer et al., 2017), where
each node updates its state by aggregating messages flowing from its direct neighbors.
GNN variants (Li et al., 2016; Veličković et al., 2018; Kipf and Welling, 2017) mostly
differ in how each node aggregates the representations of its neighbors with its own
representation. However, most problems also require the interaction between nodes
that are not directly connected, and they achieve this by stacking multiple GNN layers.
Different learning problems require different ranges of interaction between nodes in the
graph to be solved. We call this required range of interaction between nodes – the
problem radius.

In practice, GNNs were observed not to benefit from more than few layers. The
accepted explanation for this phenomenon is over-smoothing: node representations be-
come indistinguishable when the number of layers increases (Wu et al., 2020). Nonethe-
less, over-smoothing was mostly demonstrated in short-range tasks (Li et al., 2018;
Klicpera et al., 2018; Chen et al., 2020a; Oono and Suzuki, 2020; Zhao and Akoglu,
2020; Rong et al., 2020; Chen et al., 2020b) – tasks that have small problem radii, where
a node’s correct prediction mostly depends on its local neighborhood. Such tasks in-
clude paper subject classification (Sen et al., 2008) and product category classification
(Shchur et al., 2018). Since the learning problems depend mostly on short-range in-
formation in these datasets, it makes sense why more layers than the problem radius
might be extraneous. In contrast, in tasks that also depend on long-range information
(and thus have larger problem radii), we hypothesize that the explanation for limited
performance is over-squashing.

To allow a node to receive information from other nodes at a radius of K, the GNN
needs to have at least K layers, or otherwise, it will suffer from under-reaching – these
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distant nodes will simply not be aware of each other. Clearly, to avoid under-reaching,
problems that depend on long-range interaction require as many GNN layers as the
range of the interaction. However, as the number of layers increases, the number of
nodes in each node’s receptive field grows exponentially. This causes over-squashing:
information from the exponentially-growing receptive field is compressed into fixed-
length node vectors. Consequently, the graph fails to propagate messages flowing from
distant nodes, and learns only short-range signals from the training data.

In fact, the GNN bottleneck is analogous to the bottleneck of sequential RNN
models. Traditional seq2seq models (Sutskever et al., 2014; Cho et al., 2014a,b) suffered
from a bottleneck at every decoder state – the model had to encapsulate the entire
input sequence into a fixed-size vector. In RNNs, the receptive field of a node grows
linearly with the number of recursive applications. However in GNNs, the bottleneck is
asymptotically more harmful, because the receptive field of a node grows exponentially.
This difference is illustrated in Figure 6.1.

Our main contribution in this work is introducing the over-squashing phenomenon –
a novel explanation for the major and well-known issue of training GNNs for long-range
problems, and showing its harmful practical implications. We use a controlled problem
to demonstrate how over-squashing prevents GNNs from fitting long-range patterns in
the data, and to provide theoretical lower bounds for the required hidden size given the
problem radius. We show, analytically and empirically, that GCN (Kipf and Welling,
2017) and GIN (Xu et al., 2019) are susceptible to over-squashing more than other
types of GNNs such as GAT (Veličković et al., 2018) and GGNN (Li et al., 2016).
We further show that prior work that extensively tuned GNNs to real-world datasets
suffer from over-squashing: breaking the bottleneck using a simple fully adjacent layer
reduces the error rate by 42% in the QM9 dataset, by 12% in ENZYMES, by 4.8% in
NCI1, and improves accuracy in VarMisuse, without any additional tuning.

6.1.1 Preliminaries

A directed graph G = (V, E) contains nodes V and edges E , where (u, v) ∈ E denotes
an edge from a node u to a node v. For brevity, in the following definitions we treat
all edges as having the same type; in general, every edge can have a type and features
(Schlichtkrull et al., 2018).

Graph neural networks Graph neural networks operate by propagating neural
messages between neighboring nodes. At every propagation step (a graph layer): the
network computes each node’s sent message; every node aggregates its received mes-
sages; and each node updates its representation by combining the aggregated incoming
messages with its own previous representation.

Formally, each node is associated with an initial representation h(0)
v ∈ Rd0 . This

representation is usually derived from the node’s label or its given features. Then, a

97



GNN layer updates each node’s representation given its neighbors, yielding h(1)
v ∈ Rd.

In general, the k-th layer of a GNN is a parametric function fk that is applied to each
node by considering its neighbors:

h(k)
v = fk

(
h(k−1)

v , {h(k−1)
u | u ∈ Nv}; θk

)
(6.1)

where Nv is the set of nodes that have edges to v: Nv = {u ∈ V | (u, v) ∈ E}. The
total number of layers K is usually determined empirically as a hyperparameter.

The design of the function f is what mostly distinguishes one type of GNN from
the other. For example, graph convolutional networks (GCN) define f as:

h(k)
v = σ

(∑
u∈Nv∪{v}

1
cu,v

W (k)h(k−1)
u

)
(6.2)

where σ is a nonlinearity such as ReLU , and cu,v is a normalization factor often set
to
√

|Nv| · |Nu| or |Nv| (Hamilton et al., 2017). Usually, the last (K-th) layer’s output
is used for prediction: in node-prediction, h(K)

v is used to predict a label for v; in
graph-prediction, a permutation-invariant “readout” function aggregates the nodes of
the final layer using summation, averaging, or a weighted sum (Li et al., 2016).

6.1.2 The GNN Bottleneck

Given a graph G = (V, E) and a given node v, we denote the problem’s required range of
interaction, the problem radius, by r. r is generally unknown in advance, and usually
approximated empirically by tuning the number of layers K. We denote the set of
nodes in the receptive field of v by N K

v , which is defined recursively as N 1
v := Nv and

N K
v := N K−1

v ∪ {w | (w, u) ∈ E ∧ u ∈ N K−1
v }.

When a prediction problem relies on long-range interaction between nodes, the
GNN must have as many layers K as the estimated range of these interactions, or
otherwise, these distant nodes would not be able to interact. It is thus required that
K ≥ r. However, the number of nodes in each node’s receptive field grows exponentially
with the number of layers: ∥N K

v ∥ = O (exp (K)) (Chen et al., 2018a). As a result, an
exponentially-growing amount of information is squashed into a fixed-length vector
(the vector resulting from the ∑ in Equation (6.2)), and crucial messages fail to reach
their distant destinations. Instead, the model learns only short-ranged signals from the
training data and consequently might generalize poorly at test time.

Example Consider the NeighborsMatch problem of Figure 6.2. Green nodes ( A ,
B , C ) have a varying number of blue neighbors ( A ) and an alphabetical label. Each
example in the dataset is a different graph that has a different mapping from numbers
of neighbors to labels. The rest of the graph (marked as ) represents a general,
unknown, graph structure. The goal is to predict a label for the target node, which
is marked with a question mark ( ? ), according to its number of blue neighbors. The
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C

B

A

?

Figure 6.2: The NeighborsMatch problem: green nodes have blue neighbors and an
alphabetical label. The goal is to predict the label (A, B, or C) of the green node that
has the same number of blue neighbors as the target node in the same graph. In this
example, the correct label is C, because the target node has two blue neighbors, like
the node marked with C in the same graph.

correct answer is C in this case, because the target node has two blue neighbors, like
the node marked with C in the same graph. Every example in the dataset has a
different mapping from numbers of neighbors to labels, and thus message propagation
and matching between the target node and all the green nodes must be performed for
every graph in the dataset.

Since the model must propagate information from all green nodes before predicting
the label, a bottleneck at the target node is inevitable. This bottleneck causes over-
squashing, which can prevent the model from fitting the training data perfectly. provide
theoretical lower bounds for the GNN’s hidden size. Obviously, adding direct edges
between the target node and the green nodes, or making the existing edges bidirectional,
could ease information flow for this specific problem. However, in real-life domains (e.g.,
molecules), we do not know the optimal message propagation structure a priori, and
must use the given relations (such as bonds between atoms) as the graph’s edges.

Although this is a contrived problem, it resembles real-world problems that are often
modeled as graphs. For example, a computer program in a language such as Python
may declare multiple variables (i.e., the green nodes in Figure 6.2) along with their
types and values (their numbers of blue neighbors in Figure 6.2); later in the program,
predicting which variable should be used in a specific location (predict the alphabetical
label in Figure 6.2) must use one of the variables that are available in scope based on
the required type and the required value at that point.

Short- vs. long-range problems Much of prior GNN work has focused on problems
that were local in nature, with small problem radii, where the underlying inductive
bias was that a node’s most relevant context is its local neighborhood, and long-range
interaction was not necessarily needed. With the growing popularity of GNNs, their
adoption expanded to domains that required longer-range information propagation as
well, without addressing the inherent bottleneck. In this work, we focus on problems
that require long-range information. That is, a correct prediction requires considering
the local environment of a node and interactions beyond the close neighborhood. For
example, a chemical property of a molecule (Ramakrishnan et al., 2014; Gilmer et al.,
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2017) can depend on the combination of atoms that reside in the molecule’s opposite
sides. Problems of this kind require long-range interaction, and thus, a large number
of GNN layers. Since the receptive field of each node grows exponentially with the
number of layers, the more layers – over-squashing is more harmful.

In problems that are local in nature (small r) – the bottleneck is less troublesome,
because a GNN can perform well with only few layers (e.g., K=2 layers in Kipf and
Welling (2017)), and the receptive field of a node can be exponentially smaller. Domains
such as citation networks (Sen et al., 2008), social networks (Leskovec and Mcauley,
2012), and product recommendations (Shchur et al., 2018) usually raise short-range
problems and are thus not the focus of this work. So, how long is long-range? We
discuss and analyze this question theoretically in Alon and Yahav (2021).

Evaluation In Alon and Yahav (2021), we show empirical evaluation that demon-
strates that the GNN bottleneck exists and raises over-squashing starting from values
of r as small as r = 4: we generated a synthetic benchmark that is theoretically solv-
able; however, in practice, all GNNs fail to reach 100% training accuracy because of the
bottleneck. Second, we find that the bottleneck exists in prior work, which addressed
real-world problems, by showing that the original implementations of the authors can
be further improved by considering the bottleneck. Finally, we find that GNNs that
absorb incoming edges equally, like GCN (Kipf and Welling, 2017) and GIN (Xu et al.,
2019), are more susceptible to over-squashing than GNNs that use attention to weigh
incoming edges like GAT (Veličković et al., 2018) and GGNN (Li et al., 2016).

More details can be found in Alon and Yahav (2021).

6.2 How Attentive are Graph Attention Networks?

Graph Attention Networks (GATs) are one of the most popular GNN architectures
and are considered as the state-of-the-art architecture for representation learning with
graphs. In GAT, every node attends to its neighbors given its own representation as the
query. However, in this work we show that GATs can only compute a restricted kind of
attention where the ranking of attended nodes is unconditioned on the query node. We
formally define this restricted kind of attention as static attention and distinguish it
from a strictly more expressive dynamic attention. Because GATs use a static attention
mechanism, there are simple graph problems that GAT cannot express: in a controlled
problem, we show that static attention hinders GAT from even fitting the training data.
To remove this limitation, we introduce a simple fix by modifying the order of operations
and propose GATv2: a dynamic graph attention variant that is strictly more expressive
than GAT. We perform an extensive evaluation and show that GATv2 outperforms GAT
across 11 OGB and other benchmarks while we match their parametric costs. Our code
is available at https://github.com/tech-srl/how_attentive_are_gats .
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k0 k1 k2 k3 k4 k5 k6 k7 k8 k9
q0
q1
q2
q3
q4
q5
q6
q7
q8
q9

0.08 0.10 0.10 0.07 0.08 0.08 0.11 0.09 0.20 0.08

0.05 0.10 0.10 0.04 0.04 0.04 0.13 0.06 0.38 0.04

0.05 0.10 0.10 0.04 0.05 0.05 0.13 0.06 0.38 0.05

0.08 0.10 0.10 0.07 0.08 0.08 0.10 0.09 0.24 0.08

0.08 0.09 0.09 0.07 0.07 0.07 0.10 0.08 0.27 0.07

0.09 0.11 0.11 0.08 0.09 0.08 0.11 0.10 0.16 0.09

0.04 0.10 0.11 0.03 0.04 0.04 0.14 0.06 0.40 0.04

0.07 0.09 0.09 0.06 0.07 0.07 0.10 0.08 0.29 0.07

0.04 0.11 0.11 0.02 0.04 0.03 0.14 0.07 0.41 0.04

0.07 0.09 0.09 0.06 0.07 0.07 0.11 0.08 0.30 0.07

k0 k1 k2 k3 k4 k5 k6 k7 k8 k9

0.1

0.2

0.3

0.4 q0
q1
q2
q3
q4
q5
q6
q7
q8
q9

(a) Attention in standard GAT (Veličković et al.
(2018))

k0 k1 k2 k3 k4 k5 k6 k7 k8 k9
q0
q1
q2
q3
q4
q5
q6
q7
q8
q9

0.95 0.00 0.00 0.01 0.01 0.00 0.00 0.02 0.01 0.00

0.01 0.92 0.01 0.01 0.01 0.00 0.01 0.01 0.00 0.02

0.00 0.00 0.95 0.00 0.00 0.01 0.02 0.01 0.00 0.00

0.01 0.01 0.00 0.94 0.00 0.01 0.00 0.00 0.02 0.01

0.00 0.00 0.00 0.00 0.96 0.00 0.00 0.01 0.01 0.00

0.00 0.01 0.01 0.01 0.01 0.89 0.01 0.01 0.04 0.02

0.00 0.01 0.04 0.00 0.01 0.01 0.86 0.02 0.01 0.03

0.04 0.02 0.01 0.01 0.03 0.01 0.00 0.87 0.00 0.01

0.01 0.00 0.01 0.01 0.01 0.01 0.01 0.00 0.94 0.00

0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.93

k0 k1 k2 k3 k4 k5 k6 k7 k8 k9
0.0

0.2

0.4

0.6

0.8

1.0

q0
q1
q2
q3
q4
q5
q6
q7
q8
q9

(b) Attention in GATv2, our fixed version of
GAT

Figure 6.3: Standard GAT (Figure 6.3a) computes static attention: the ranking of
attention coefficients is global for all nodes in the graph, and is unconditioned on the
query node. For example, all queries (q0 to q9) attend mostly to the 8th key (k8). In
contrast, GATv2 (Figure 6.3b) can actually compute dynamic attention, where every
query has a different ranking of attention coefficients of the keys.

Graph neural networks (GNNs; Gori et al., 2005; Scarselli et al., 2008) have seen
increasing popularity over the past few years (Duvenaud et al., 2015; Atwood and
Towsley, 2016; Bronstein et al., 2017; Monti et al., 2017). GNNs provide a general
and efficient framework to learn from graph-structured data. Thus, GNNs are easily
applicable in domains where the data can be represented as a set of nodes and the
prediction depends on the relationships (edges) between the nodes. Such domains
include molecules, social networks, product recommendation, computer programs and
more.

A GNN can be viewed as a message-passing network (Gilmer et al., 2017), where
each node iteratively updates its state by interacting with its neighbors. GNN vari-
ants (Wu et al., 2019; Xu et al., 2019; Li et al., 2016) mostly differ in how each node
aggregates the representations of its neighbors and combines them with its own repre-

101



sentation. Veličković et al. (2018) pioneered the use of attention-based neighborhood
aggregation, in one of the most popular GNN variants – Graph Attention Network
(GAT). In GAT, every node updates its representation by attending to its neighbors
using its own representation as the query. This generalizes the standard averaging or
max-pooling of neighbors (Kipf and Welling, 2017; Hamilton et al., 2017), by allowing
every node to compute a weighted average of its neighbors. The work of Veličković et al.
also generalizes the Transformer’s (Vaswani et al., 2017) self-attention mechanism, from
sequences to graphs (Joshi, 2020).

While GAT is one of the most popular GNN architectures (Bronstein et al., 2021)
and is considered as the state-of-the-art neural architecture for learning with graphs
(Wang et al., 2019a), we show that GATs do not actually compute dynamic attention,
a fact that severely hinders their expressiveness. Instead, we show that GAT only uses
a restricted “static” form of attention: for every query node, attention is monotonic
with respect to its neighbor key scores. That is, the ranking (the argsort) of attention
coefficients is shared across all nodes in the graph, and is unconditioned on the query
node. This limitation of the standard GAT is demonstrated in Figure 6.3a.

Supposedly, the conceptual idea of attention as the form of interaction between GNN
nodes is orthogonal to the specific choice of attention function. However, Veličković
et al.’s original design of GAT has spread to a variety of domains (Wang et al., 2019a;
Qiu et al., 2018; Yang et al., 2020; Wang et al., 2019c; Huang and Carley, 2019; Ma
et al., 2020; Kosaraju et al., 2019; Nathani et al., 2019; Wu et al., 2020; Zhang et al.,
2020) and has become the default implementation of “graph attention network” in
all popular GNN libraries such as PyTorch Geometric (Fey and Lenssen, 2019), DGL
(Wang et al., 2019b), and others (Dwivedi et al., 2020; Gordić, 2020; Brockschmidt,
2020).

To overcome the limitation we identified in GAT, we introduce a simple fix to its
attention function by modifying the order of internal operations. The result is GATv2
– a graph attention variant that has a universal approximator attention function, and
is thus strictly more expressive than GAT. The effect of fixing the attention function in
GATv2 is demonstrated in Figure 6.3b.

In summary, our main contribution is identifying that one of the most popular
GNN types, the graph attention network, cannot actually compute dynamic attention.
We introduce formal definitions for analyzing the expressive power of graph attention
mechanisms, and derive our claims theoretically from the equations of Veličković et al.
(2018). Empirically, we use a synthetic problem to show that standard GAT cannot
express alignment problems that require dynamic attention. We introduce a simple
fix by switching the order of internal operations in the attention function of GAT,
and propose GATv2, which does compute dynamic attention. We further conduct a
thorough empirical comparison of GAT and GATv2 and find that GATv2 outperforms
GAT across 11 benchmarks of node-, link-, and graph-prediction. For example, GATv2
outperforms extensively tuned GNNs by over 1.4% in the difficult “UnseenProj Test” set
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of the VarMisuse task (Allamanis et al., 2018), without any hyperparameter tuning; and
GATv2 improves over an extensively-tuned GAT by 11.5% in 13 prediction objectives
in QM9. In node-prediction benchmarks from OGB (Hu et al., 2020), not only that
GATv2 outperforms GAT with respect to accuracy – we find that GATv2 is also much
more robust to noise.

More details can be found in Brody et al. (2021).

This work was loosely inspired by my previous experience in examining attention in
speech recognition models. More details about this can be found in Alon et al. (2019b).
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Chapter 7

Additional Applications

This section surveys additional applications of programming language processing.

Edit Completion We address the problem of predicting edit completions based on
a learned model that was trained on past edits. Given a code snippet that is partially
edited, our goal is to predict a completion of the edit for the rest of the snippet. We
refer to this task as the EditCompletion task and present a novel approach for tackling
it. The main idea is to directly represent structural edits. This allows us to model the
likelihood of the edit itself, rather than learning the likelihood of the edited code. We
represent an edit operation as a path in the program’s Abstract Syntax Tree (AST),
originating from the source of the edit to the target of the edit. Using this represen-
tation, we present a powerful and lightweight neural model for the EditCompletion
task.

We conduct a thorough evaluation, comparing our approach to a variety of rep-
resentation and modeling approaches that are driven by multiple strong models such
as LSTMs, Transformers, and neural CRFs. Our experiments show that our model
achieves a 28% relative gain over state-of-the-art sequential models and 2× higher ac-
curacy than syntactic models that learn to generate the edited code, as opposed to
modeling the edits directly.

Our code, dataset, and trained models are publicly available at https://github.
com/tech-srl/c3po/ .

Adversarial Examples Neural models of code have shown impressive results when
performing tasks such as predicting method names and identifying certain kinds of
bugs. We show that these models are vulnerable to adversarial examples, and introduce
a novel approach for attacking trained models of code using adversarial examples. The
main idea of our approach is to force a given trained model to make an incorrect
prediction, as specified by the adversary, by introducing small perturbations that do
not change the program’s semantics, thereby creating an adversarial example. To find
such perturbations, we present a new technique for Discrete Adversarial Manipulation
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of Programs (DAMP). DAMP works by deriving the desired prediction with respect
to the model’s inputs, while holding the model weights constant, and following the
gradients to slightly modify the input code.

We show that our DAMP attack is effective across three neural architectures:
code2vec, GGNN, and GNN-FiLM, in both Java and C#. Our evaluations demon-
strate that DAMP has up to 89% success rate in changing a prediction to the adversary’s
choice (a targeted attack) and a success rate of up to 94% in changing a given predic-
tion to any incorrect prediction (a non-targeted attack). To defend a model against
such attacks, we empirically examine a variety of possible defenses and discuss their
trade-offs. We show that some of these defenses can dramatically drop the success rate
of the attacker, with a minor penalty of 2% relative degradation in accuracy when they
are not performing under attack.

Our code, data, and trained models are available at https://github.com/tech-srl/
adversarial-examples .

Neural Reverse Engineering In David et al. (2020), we address the problem of
reverse engineering of stripped executables, which contain no debug information. This
is a challenging problem because of the low amount of syntactic information available
in stripped executables, and the diverse assembly code patterns arising from compiler
optimizations.

We present a novel approach for predicting procedure names in stripped executables.
Our approach combines static analysis with neural models. The main idea is to use
static analysis to obtain augmented representations of call sites; encode the structure of
these call sites using the control-flow graph (CFG) and finally, generate a target name
while attending to these call sites. We use our representation to drive graph-based,
LSTM-based and Transformer-based architectures.

Our evaluation shows that our models produce predictions that are difficult and time
consuming for humans, while improving on existing methods by 28% and by 100% over
state-of-the-art neural textual models that do not use any static analysis. Code and
data for this evaluation are available at https://github.com/tech-srl/Nero .

7.1 Neural Edit Completion

Software development is an evolutionary process. Programs are being maintained,
refactored, fixed, and updated on a continuous basis. Program edits are therefore at the
very core of software development. Poor edits can lead to bugs, security vulnerability,
unreadable code, unexpected behavior, and more. The ability to suggest a good edit
in code is therefore crucial.

We introduce the EditCompletion task: predict edit completions based on a learned
model that was trained on past edits. Given a code snippet that is partially edited, our
goal is to predict an edit completion that completes the edit for the rest of the snippet.
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- if(self.isDisabled())
+ if(attack == null || attack.IsTraitDisabled)
    return false;
- var targetPos = attack != null
    ? attack.GetTargetPosition(pos, target) : target.CenterPosition;

+ var targetPos =               
      attack.GetTargetPosition(pos, target)                        ;

Input

OutputEdit Script

(a) The predicate of the if statement in C was edited to include a null check for attack. Thus,
in P, the checking of attack != null and the ternary operator can be removed.

Input

- public override bool GetFileCharacteristics(
    out FileCharacteristics fileCharacteristics)
+ public override FileCharacteristics GetFileCharacteristics(
                                               )
  {
-   fileCharacteristics = new FileCharacteristics(
      this.OpenTime, this.currentFileLength);
    return true;

+   return   new FileCharacteristics(
      this.OpenTime, this.currentFileLength);
                
  }

OutputEdit Script

(b) The signature of GetFileCharacteristics in C was edited to return a
FileCharacteristic object instead of modifying an output parameter. Thus, in P,
the method should return a FileCharacteristic object instead of returning true.

Figure 7.1: Examples of EditCompletion. The input consists of a program fragment
P and edits that occurred in the context that transformed C into C′. The output is ∆P
– an edit script that describes the likely edit. Applying ∆P to P results in P ′ – the
code after the edit.
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Figure 7.2: An example of two edits. These examples are different and the edits
operate on different values. However, observing the structure of these edits reveals
the similarity between them and allows a learning model to generalize better. This
similarity is expressed as almost identical AST paths. For simplicity, only the program
fragment that should be edited P is shown, without the context C.

The edit completion is represented technically as a sequence of edit operations that we
refer to as an edit script.

Problem Definition Let P be a given program fragment and C be the surrounding
context of P before any edits were applied. Let ∆C denote the edits that were applied
to C, and C′ = ∆C (C) the resulting edited context. The goal in our EditCompletion
task is to predict an edit function ∆P , such that applying ∆P to P results in the
program fragment after the edit: ∆P (P) = P ′. Our underlying assumption is that
the distribution of edits in P can be inferred from the edits ∆C that occurred in its
context. We thus model the probability: Pr (∆P | ∆C). We present a new approach for
representing and predicting ∆P in the EditCompletion task, named C3: Contextual
Code Changes.

Motivating Examples Consider the EditCompletion examples in Figure 7.1a and
Figure 7.1b. These illustrate the significance of edits in the context C and how they can
help in suggesting a likely edit for P. In Figure 7.1a, the edit in the context consists of
changing the if statement predicate, resulting in a null check for the variable attack.
After the edit in the context, the value of attack in P cannot be null. Therefore, the
ternary statement that checks attack for nullness in P can be removed. Our model
successfully predicted the needed edit ∆P , which is applied to P to yield P ′.
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Figure 7.1b shows another example, in which the edit in the context is a modification
of a function signature. In C′, the return type was changed to FileCharacteristics, and
the output parameter fileCharacteristics for the function was removed. P consists of
an assignment to the parameter fileCharacteristics, and a return statement of true
value. The edit in the context implies a necessary edit in P, in which the assignment
statement has to be removed (since fileCharacteristics is no longer defined) and the
return statement must include a variable of type FileCharacteristics. Our model
successfully predicted the correct edit for P. P ′ consists of returning an object of type
FileCharacteristics.

Edit Completion vs. Code Completion It is important to note that EditComple-
tion and code completion are completely different tasks. The goal of code completion
is to predict missing fragments of a program, given a partial program as context. In
contrast, the goal of EditCompletion is to predict additional edits in a partial sequence
of edit operations. That is, while code completion operates on code, EditCompletion
operates on code edits.

Representing Code Edits The main design decision in learning code edits is how
to represent the edit, i.e., how to represent the difference between the code in its original
form and its desired, altered, form. Naïvely, differencing programs can be performed by
treating the code as text and using text-diff algorithms for line- or inline-differencing.
In contrast, we model the difference between the abstract syntax trees (ASTs) of the
original and the edited code. This allows us to naturally use paths in the AST (AST
paths) to model edits.

Our Approach We present a novel approach for EditCompletion: predicting con-
textual code changes – C3. Code changes can be described as a sequence of edit opera-
tions, such as “move a node, along with its underlying subtree, to be a child of another
node” or “update the value of a node to be identical to the value of another node”. Such
edit operations can be naturally represented as paths between the source node and
the target node, along with the relationship between them and the edit command, i.e.,
“move” or “update”. AST paths provide a natural way to express binary relationships
between nodes (and thus subtrees) in the AST. We use AST paths to represent ∆C –
edits that occurred in the context and transformed C into C′, such that ∆C (C) = C′.
We also use AST paths to represent ∆P – the edits that should be applied to P. We
thus model the probability Pr (∆P | ∆C), where both the input ∆C and the output ∆P
are represented as AST paths.

Representing edits as paths allows a learning model to generalize well across dif-
ferent examples. Consider the two examples in Figure 7.2. In Figure 7.2a, the edit
modifies a series of LINQ calls, converting Where(<predicate>).FirstOrDefault() into
FirstOrDefault(<predicate>). The edit in Figure 7.2b modifies Where(<predicate>).First()
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into First(<predicate>). Although the predicates are different and these edits operate
on different values, the structure of the edits in Figure 7.2a and Figure 7.2b is identical.
This similarity is expressed in the AST paths that represent these edits. For example,
consider the identical structure of the path 1O in the two figures, where it operates on
a different value in each figure (FirstOrDefault and First).

Our use of AST paths allows the model to generalize these edits, even though these
edits are not identical and their predicates are different.

We apply a Pointer Network (Vinyals et al., 2015) to point to paths in the AST of
P and create an edit operation sequence, i.e., an edit script. While prior work used
AST paths to read programs and predict a label Chapters 3 and 4, we generate an edit
script by predicting AST paths, i.e., making AST paths the output of our model.

We show the effectiveness of C3 on EditCompletion on a new dataset, scraped from
over 300,000 commits in GitHub.

Our approach significantly outperforms textual and syntactic approaches that either
model the code or model only the edit, and are driven by strong neural models.

Contributions The main contributions of this work are:

• We introduce the EditCompletion task: given a program P and edits that oc-
curred in its context, predict the likely edits that should be applied to P.

• C3 – a novel approach for representing and predicting contextual edits in code.
This is the first approach that represents structural edits directly.

• Our technique directly captures the relationships between subtrees that are changed
in an edit using paths in the AST. The output of our technique is an edit script
that is executed to edit the program fragment P.

• A prototype implementation of our approach, called C3PO, for Contextual Code
Changes via Path Operations. C3PO is implemented using a strong neural model
that predicts the likely edit by pointing to an AST path that reflects that edit.

• A new EditCompletion dataset of source code edits and their surrounding con-
text edits, scraped from over 300,000 commits in GitHub.

• An extensive empirical evaluation that compares our approach to a variety of
representation and modeling approaches, driven by strong models such as LSTMs,
Transformers, and neural CRFs. Our evaluation shows that our model achieves
over 28% relative gain over state-of-the-art strong sequential models, and over 2×
higher accuracy than syntactic models that do not model edits directly.

• A thorough ablation study that examines the contribution of syntactic and textual
representations in different components of our model.
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+ productType.AddNavigation(
    "FeaturedProductCategory",
    featuredProductFk, 
    pointsToPrincipal: false);

- productType.AddNavigation(
    new Navigation(
      featuredProductFk,
      "FeaturedProductCategory", 
      pointsToPrincipal: false);

(e)

Figure 7.3: An EditCompletion example from our test set. Figure 7.3a shows the
edit that transforms C into C′ – overloading the function AddNavigation. Figure 7.3e
shows P and P ′ as code in red and green, respectively. Figure 7.3b depicts the partial
AST and the first three edit operations of the edit. Figure 7.3c shows the AST after
applying the first three operations, and shows the next three operations as AST paths.
Figure 7.3d illustrates the AST after performing all operations, resulting in an AST
that corresponds to P ′. Every edit operation is represented by an AST path having
the same color and number as the edit command. Dotted contours represent subtrees
that will be affected by applying these operations.

7.1.1 Motivating Example

In this section, we demonstrate our approach using a simple EditCompletion example.
The main idea is to represent all valid edit operations in P as AST paths, and predict
a sequence of these paths. Since every path is associated with an edit operation, by
pointing to a sequence of paths, we, in fact, predict an edit script.

High-level Overview Consider the edit that occurred in the context of Figure 7.3a
– insertion of a new definition of the method AddNavigation, which overloads previous
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definitions. After applying this edit, it is possible to use this new signature when calling
AddNavigation. Consider the original code snippet P at the top of Figure 7.3e. The edit
in the context allows us to simplify the call to AddNavigation using the new signature,
as shown in the “edited” code snippet P ′ at the bottom of Figure 7.3e. Consider the
partial AST of P in Figure 7.3b. The desired edit can be described as an edit script
consisting of six edit operations to the AST of P. Consider the first operation: 1O MOV.
The meaning of this operation is to move the node Expr with its subtree to be the
leftmost child of the node Unit. This edit operation can be represented by the red 1O
path: Expr → Arg → ArgList → Call → Expr → Unit. Note how this path directly

captures the syntactic relationship between the node Expr and the node Unit, allowing
our model to predict a MOV operation as part of the edit script.

In Figure 7.3c we can see the result of applying the following first three operations:
1O MOV, 2O MOV, 3O MOV, moving subtrees to new locations in the tree. The last three
commands are DEL operations, expressing deletion of a node and its underlying subtree.
These operations can be represented using paths as well. For instance, 4O DEL is repre-
sented by the green 4O path: Navigation → Call → Expr → Unit → DEL, where DEL
is an artificial node that we add as a child of the AST’s root. In Figure 7.3d we can
see the AST after applying all six operations. After executing all six operations, our
model produces P ′, shown in Figure 7.3e.

Path Extraction To inform the model about the available edits it can use for predic-
tion, we parse the AST of P to extract all AST paths that represent valid edits. Every
path can represent different edit “commands” that use the same path. For example,
consider the blue 2O path in Figure 7.3b: Name → Call → ArgList → Arg → Expr →
Call. This path can represent a move operation – MOV, i.e., moving the node Name with
its subtree, to be the leftmost child of Call; alternatively, this path can represent an
insertion operation – INS, i.e., copy Name with its subtree, and insert it as the leftmost
child of Call. To distinguish between different edit operations that are represented
using the same AST path, each path is encoded as a vector once, and projected into
three vectors using different learned functions. Each resulting vector corresponds to a
different kind of edit operation. For example, the orange 3O path in Figure 7.3b can
represent either “move” (MOV), “update” (UPD) or “insert” (INS) operations. In this case,
this path was projected using the learned function that represents “move”.

Edit Script Prediction We predict one edit operation at each step by pointing at
a path and its associated operation from among the valid edit operations. This results
in an edit script. For example, in Figure 7.3, our model finds that the red 1O path with
MOV is most likely to be the first operation. Then, given this edit, our model finds that
the blue 2O path with MOV is most likely to be the next operation, and so on, until we
predict a special “end of sequence” (EOS) symbol.
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Modeling Code Likelihood vs. Modeling Edit Likelihood Modeling edits using
AST paths provides an effective way to model only the difference between P and P ′.
For example, consider the red 1O path that moves the subtree rooted at Expr from its
original place to be the first child of Unit. To predict this edit, our model only needs
to select the red 1O path out of the other available operations. In contrast, a model
that attempts to generate P ′ entirely (Chen et al., 2019), would need to generate the
entire subtree from scratch in the new location.

Pairwise Edit Operations Most edit operations, such as “move” and “update”, can
be described as pairwise operations, having the “source” and the “target” locations as
their two arguments. AST paths provide a natural way to represent pairwise relations,
originating from the “source” location, and reaching the “target” location through the
shortest path between them in the tree. In contrast, prior work that used only unary
edit operations such as HOPPITY (Dinella et al., 2020) are limited to inserting each
node individually, and thus use multiple edit commands to express the 1O MOV operation.
Our model represents this edit operation as a single AST path – the red 1O path.

Key aspects The example in Figure 7.3 demonstrates several key aspects of our
method:

• Edits applied to the context of P can provide useful information for the required
edit to P.

• Pairwise edit operations can be naturally represented as AST paths.

• A neural model, trained on these paths, can generalize well to other programs,
thanks to the direct modeling of code edits as paths.

• By pointing at the available edit operations, the task that the model addresses
becomes choosing the most likely edit, rather than generating P ′ from scratch,
and thus significantly eases the learning task.

More details can be found in Brody et al. (2020).

7.2 Adversarial Examples for Models of Code

In domains such as computer vision, deep models have been shown to be vulnerable
to adversarial examples (Szegedy et al., 2013; Goodfellow et al., 2014b). Adversar-
ial examples are inputs crafted by an adversary to force a trained neural model to
make a certain (incorrect) prediction. The generation of adversarial examples was
demonstrated for image classification (Szegedy et al., 2013; Goodfellow et al., 2014b,a)
and for other domains (Carlini and Wagner, 2018; Taori et al., 2019; Ebrahimi et al.,
2017; Pruthi et al., 2019). The basic idea underlying many of the techniques is to add
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Correctly predicted example Adversarial perturbations
Target: contains Target: escape

void f1(int[] array){
boolean swapped = true;
for (int i = 0;

i < array.length && swapped; i++){
swapped = false;
for (int j = 0;
j < array.length-1-i; j++) {

if (array[j] > array[j+1]) {
int temp = array[j];
array[j] = array[j+1];
array[j+1]= temp;
swapped = true;

}
}

}
}

Prediction: sort (98.54%)

void f2(int[] ttypes){
boolean swapped = true;
for (int i = 0;

i < ttypes.length && swapped; i++){
swapped = false;
for (int j = 0;
j < ttypes.length-1-i; j++) {

if (ttypes[j] > ttypes[j+1]) {
int temp = ttypes[j];
ttypes[j] = ttypes[j+1];
ttypes[j+1]= temp;
swapped = true;

}
}

}
}

Prediction: contains (99.97%)

void f3(int[] array){
boolean swapped = true;
for (int i = 0;

i < array.length && swapped; i++){
swapped = false;
for (int j = 0;
j < array.length-1-i; j++) {

if (array[j] > array[j+1]) {
int temp = array[j];
array[j] = array[j+1];
array[j+1]= temp;
swapped = true;

}
}

} int upperhexdigits;
}

Prediction: escape (100%)

Figure 7.4: A Java snippet f1 is classified correctly as sort by the model of code2vec.
org. Given f1 and the target contains, our approach generates f2 by renaming array
to ttypes. Given the target escape, our approach generates f3 by adding an unused
variable declaration of int upperhexdigits. Additional examples can be found in Yefet
et al. (2020).

specially-crafted noise to a correctly labeled input, such that the model under attack
yields a desired incorrect label when presented with the modified input (i.e., with the
addition of noise). Adding noise to a continuous object to change the prediction of a
model is relatively easy to achieve mathematically. For example, for an image, this can
be achieved by changing the intensity of pixel values (Szegedy et al., 2013; Goodfellow
et al., 2014b). Unfortunately, this does not carry over to the domain of programs, since
a program is a discrete object that must maintain semantic properties.

In this work, we present a novel approach for generating adversarial examples for
neural models of code. More formally:

7.2.1 Goal

Given a program P and a correct prediction y made by a model M, such that: M (P) =
y, our goal is to find a semantically equivalent program P ′ such that M makes a given
adversarial prediction ybad of the adversary’s choice: M (P ′) = ybad.

The main challenge in tackling the above goal lies in exploring the vast space of
programs that are semantically equivalent to P, and finding a program for which M
will predict ybad.

Generally, we can define a set of semantic-preserving transformations, which in
turn induce a space of semantically equivalent programs. For example, we can rename
variables; and add dead code.

There are clearly many other semantic preserving transformations (e.g., re-ordering
independent statements), but their application would require a deeper analysis of the
program to guarantee that they are indeed semantic preserving. In this work, therefore,
we focus on the above two semantic-preserving transformations, which can be safely
applied without any semantic analysis.
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Original variable name

v′ = v̄ − η · ∇v̄J(θ, x, ybad)

argmax

Adversarial variable name

Figure 7.5: Perturbing a variable name: the original variable name is represented as a
one-hot vector over the variable-name vocabulary. After perturbation, the vector is no
longer one-hot. We apply argmax to find the most likely adversarial name, resulting
with another one-hot vector over the variable-name vocabulary.

One naïve approach for exploring the space of equivalent programs is to randomly
apply transformations using brute-force. We can apply transformations randomly to
generate new programs and use the model to make a prediction for each generated
program. However, the program space to be explored is exponentially large, making
exhaustive exploration prohibitively expensive.

7.2.2 Our Approach

We present a new technique called Discrete Adversarial Manipulation of Programs
(DAMP). The main idea in DAMP is to select semantic preserving perturbations by
deriving the output distribution of the model with respect to the model’s input and
following the gradient to modify the input, while keeping the model weights constant.
Given a desired adversarial label ybad and an existing variable name, we derive the
loss of the model with ybad as the correct label, with respect to the one-hot vector of
the input variable. We then take the argmax of the resulting gradient to select an
alternative variable name, rename the original variable to the alternative name, check
whether this modification changes the output label to the desired adversarial label, and
continue iteratively. This process is illustrated in Figure 7.5.

This iterative process allows DAMP to modify the program in a way that preserves
its semantics but will cause a model to make adversarial predictions. We show that
models of code are susceptible to targeted attacks that force a model to make a specific
incorrect prediction chosen by the adversary, as well as to simpler non-targeted attacks
that force a model to make any incorrect prediction without a specific target prediction
in mind. Our approach is a “white-box” approach, since it assumes the attacker has
access to either the model under attack or to a similar model. 1 Under this assumption,

1As recently shown by Wallace et al. (2020), this is a reasonable assumption. An attacker can
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our approach is general and is applicable to any model that can be derived with respect to
its inputs i.e., any neural model. We do not make any assumptions about the internal
details or specific architecture of the model under attack.

To mitigate these attacks, we evaluate and compare a variety of defensive ap-
proaches. Some of these defenses work by re-training the model using another loss
function or a modified version of the same dataset. Other defensive approaches are
“modular”, in the sense that they can be placed in front of an already-trained model,
identify perturbations in the input, and feed a masked version of the input into the
vulnerable model. These defense mechanisms allow us to trade off the accuracy of the
original model for improved robustness.

Main Contributions The contributions of this work are:

• The first technique for generating targeted adversarial examples for models of
code. Our technique, called Discrete Adversarial Manipulation of Programs
(DAMP), is general and only requires that the attacker is able to compute gra-
dients in the model under attack (or in a similar model). DAMP is effective in
generating both targeted and non-targeted attacks.

• An experimental evaluation of attacks on three neural architectures: code2vec (Alon
et al., 2019c), GGNN (Allamanis et al., 2018), and GNN-FiLM (Brockschmidt
et al., 2019) in two languages: Java and C#. Our evaluation shows that our
adversarial technique can change a prediction according to the adversary’s will
(“targeted attack”) up to 89% of the time, and is successful in changing a given
prediction to an incorrect prediction (“non-targeted attack”) 94% of the time.

• A thorough evaluation of techniques for defending models of code against attacks
that perturb names, and an analysis of their trade-offs. When some of these
defenses are used, the success rate of the attack drops drastically for both targeted
and non-targeted attacks, with a minor penalty of 2% in accuracy.

7.2.3 Motivating Examples

We begin by demonstrating our technique on two examples, which address two different
tasks, using two different neural models, and in two programming languages (Java and
C#).

Bypass Semantic Labeling (code2vec - Java) We demonstrate how our approach
can force the code2vec (Alon et al., 2019c) model to predict a label of our choice.
Consider the code snippet f1 of Figure 7.4. This code snippet sorts a given array. The

imitate the model under attack by: training an imitation model using labels achieved by querying
the original model; crafting adversarial examples using the imitation model; and transferring these
adversarial examples back to the original model.
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Correctly predicted example Adversarial perturbation

Target: SourceType

struct TypePair : IEquatable<TypePair>
{

public static TypePair Create<TSource,
TDestination>(TSource source,

TDestination destination, ...)
{

...
}

...

public Type SourceType { get; }
public Type DestinationType { get; }
public bool Equals(TypePair other) =>

SourceType == other.SourceType
&& DestinationType

== other. DestinationType ;
}

(a)

struct TypePair : IEquatable<TypePair>
{

public static TypePair Create<TSource,
TDestination>(TSource source,

TDestination scsqbhj, ...)
{

...
}

...

public Type SourceType { get; }
public Type DestinationType { get; }
public bool Equals(TypePair other) =>

SourceType == other.SourceType
&& DestinationType

== other. SourceType ;
}

(b)

Figure 7.6: A C# VarMisuse example which is classified correctly as DestinationType
in the method Equals by the GGNN model of Allamanis et al. (2018). Given the
code in Figure 7.6a and the target SourceType, our approach renames a local variable
destination in another method to the specific name scsqbhj, making the model predict
the wrong variable in the method Equals, thus (“maliciously”) introducing a real bug
in the method Equals. Additional examples are shown in Yefet et al. (2020).

code2vec model (Alon et al., 2019c) applied to this code snippet predicts the correct
name, sort, with a probability of 98.54%.

Given the code snippet f1 and the arbitrarily chosen adversarial target contains,
our approach finds that renaming the original variable array to ttypes in f2 forces
the model to predict the label contains with an even higher probability, although the
functionality remained the same. We denote this as a VarName attack.

Given the code snippet f1 and the adversarial target escape, our approach finds
that adding an unused variable (i.e., dead code) named upperhexdigits to the end of
f1 forces the model to predict the label escape with a probability of 100% (see f3 in
Figure 7.4). We denote this attack as a DeadCode targeted attack.

In general, bypassing semantic labeling models can allow a variety of malicious
behaviors. For example, a malicious developer can spread malicious code to users by
having the code classified as “benign” by a malware detection model (David et al.,
2020; Saxe and Berlin, 2015; Wang et al., 2017; Arp et al., 2014; Grosse et al., 2016).
In this work, we demonstrate the ability to bypass semantic labeling by applying our
attack on the code2vec model (Figure 7.4), forcing the model to predict a label of our
choice.

Bypass Bug Detection (VarMisuse - C#) As another example, we demonstrate
how our approach can force a Graph Neural Network (GNN) model to choose an ob-
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vious bug as the correct completion. In Figure 7.6a, a GNN model trained on the
VarMisuse task (Allamanis et al., 2018; Brockschmidt, 2020) in C# correctly chooses
to “fill the blank” using the field DestinationType inside the method Equals. By renam-
ing a local variable called destination in another method to the specific name scsqbhj
(Figure 7.6b), the model chooses the incorrect field SourceType in the method Equals.
The fields DestinationType (correct) and SourceType (incorrect) both have the same
type; thus, the code still compiles and the attack causes a real bug in Equals.

More generally, bypassing a bug detection model (Pradel and Sen, 2018; Rice et al.,
2017; Bader et al., 2019) can allow a malicious developer inside an organization or inside
an open-source project to intentionally introduce bugs. In this work, we demonstrate
this ability using the VarMisuse on Graph Neural Networks (GNNs) (Figure 7.6),
forcing the model to choose an incorrect (but type-correct) variable.

In addition to the code2vec and VarMisuse tasks that we address in this work, we
believe adversarial examples can be applied to neural code search (Sachdev et al., 2018;
Liu et al., 2019a; Cambronero et al., 2019). A developer can attract users to a specific
library or an open-source project by introducing code that will be disproportionately
highly ranked by a neural code search model.

7.2.4 Discrete Adversarial Manipulation of Programs (DAMP)

Consider the code snippet f1 of Figure 7.4 that sorts a given array. The code2vec
model (Alon et al., 2019c) applied to this code snippet predicts the correct name, sort.
Our goal is to find semantically equivalent snippets that will cause an underlying model
to yield an incorrect target prediction of our choice.

Gradient-Based Exploration of the Program Space We need a way to guide
exploration of the program space towards a specific desired target label (in a targeted
attack), or away from the original label (in a non-targeted attack).

In standard stochastic gradient descent (SGD)-based training of neural networks,
the weights of the network are updated to minimize the loss function. The gradient is
used to guide the update of the network weights to minimize the loss. However, what
we are trying to determine is not an update of the network’s weights, but rather an
“update” of the network’s inputs. A natural way to obtain such guidance is to derive the
desired prediction with respect to the model’s inputs while holding the model weights
constant and follow the gradient to modify the inputs.

In settings where the input is continuous (e.g., images), modifying the input can
be done directly by adding a small noise value and following the direction of the gra-
dient towards the desired target label (targeted), or away from the original label (non-
targeted). A common technique used for images is the Fast Gradient Signed Method
(FGSM) (Goodfellow et al., 2014b) approach, which modifies the input using a small
fixed ϵ value.
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Deriving with Respect to a Discrete Input In settings where the input is dis-
crete, the first layer of a neural network is typically an embedding layer that embeds
discrete objects, such as names and tokens, into a continuous space (Alon et al., 2019a;
Allamanis et al., 2016; Iyer et al., 2016). The input is the index of the symbol, which
is used to look up its embedding in the embedding matrix. The question for discrete
inputs is therefore: what does it mean to derive with respect to the model’s inputs?

One approach is to derive with respect to the embedding vector, which is the result of
the embedding layer. In this approach, after the gradient is obtained, we need to reflect
the update of the embedding vector back to discrete-input space. This can be done
by looking for the nearest-neighbors of the updated embedding vector in the original
embedding space, and finding a nearby vector that has a corresponding discrete input.
In this approach, there is no guarantee that following the gradient is the best step.

In contrast, our Discrete Adversarial Manipulation of Programs (DAMP) approach
derives with respect to a one-hot vector that represents the distribution over discrete
values (e.g., over variable names). Instead of deriving by the input itself, the gradient
is taken with respect to the distribution over the inputs. Intuitively, this allows us to
directly obtain the best discrete value for following the gradient.

Targeted Gradient-based Attack Using our gradient-based method, we explore
the space of semantically equivalent programs directly toward a desired adversarial
target. For example, given the code snippet f1 of Figure 7.4 and the desired target
label contains, our approach for generating adversarial examples automatically infers
the snippet f2 of Figure 7.4. Similarly, given the target label escape, our approach
automatically infers the snippet f3 of Figure 7.4.

All code snippets of Figure 7.4 are semantically equivalent. The only difference
between f1 and f2 is the name of the variables. Specifically, these snippets differ only in
the name of a single variable, which is named array in f1 and ttypes in f2. Nevertheless,
when array is renamed to ttypes, the prediction made by code2vec changes to the
desired (adversarial) target label contains. The difference between f1 and f3 is the
addition of a single variable declaration int upperhexdigits, which is never used in the
code snippet. Nevertheless, adding this declaration changes the prediction made by the
model to the desired (adversarial) target label escape.

More details can be found in Yefet et al. (2020). In Finkelshtein et al. (2020), we
extend adversarial attacks on programs to general graphs.
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Chapter 8

Conclusion

In this dissertation, we presented a simple and general approach for learning from
programs. The main idea is to represent a program using paths in its abstract syntax
tree (AST). This allows a learning model to leverage the structured nature of source
code rather than treating it as a flat sequence of tokens.

We showed that this representation can serve as basis for models that are trained
on up to 16M methods examples, and be useful for a variety of programming languages
and prediction tasks: predicting variable names, predicting method names, generating
a natural language sequence given a code snippet, and the most challenging task: any-
code completion.

We showed that these models are easily generalizable to different programming lan-
guages, including JavaScript, Java, Python, and C#. Our models perform significantly
better than previous programming-language-oriented works and state-of-the-art NMT
models applied in our settings. Our approaches generalize many previous work in this
area while reaching state-of-the-art performance on challenging benchmarks.

While comparing our approach and existing methods, we found theoretical expla-
nations to the empirical differences between different models. In particular, we found
a novel explanation to a well known limitation in training graph neural networks: a
bottleneck that causes over-squashing. As a result, GNNs fails to propagate long-range
information, learn only short-range signals from the training data instead, and performs
poorly when the prediction task depends on long-range interaction.

We believe that the principles presented in this thesis can serve as a basis for a wide
range of tasks which involve source code, source code and natural language, and can
be extended to other kinds of generated outputs. Since the representation of programs
using AST paths is fundamental to programming languages, it can be used in a variety
of other machine learning tasks, including different applications and different learning
models. We also believe that structural language modeling enables a wide range of
future applications, similarly to how language modeling research has contributed to
NLP in recent years.

Code, data, and trained models can be found at:
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https://github.com/tech-srl/slm-code-generation/
https://github.com/tech-srl/bottleneck/
https://github.com/tech-srl/how_attentive_are_gats/
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ללמוד מתקשות הגרפיות הנוירונים רשתות כי מצאנו גרפיות, נוירונים רשתות על המבוססים ומודלים

המרוחקים צמתים הכוללות בתבניות תלוי ה״נכון״ החיזוי אם כלומר, בדאטא. ארוכות-טווח תבניות

תבניות על מתאמנת-יתר הרשת זה, ובמקום אותן, ללמוד מצליחה לא הרשת בגרף, מהשני אחד

בללמוד כלל מתקשים אינם כלל בדרך AST שמסלולי מכיוון מפתיעה, הייתה זו תופעה קצרות-טווח.

בשנת הגרפיות הנוירונים רשתות המצאת מאז כי מצאנו ספרותית, בסקירה ארוכות-טווח. תבניות

אולם, אלו. רשתות באימון כבעיה ידוע והיה נצפה ארוכות-טווח תבניות בללמוד שלהן הקושי ,2005

הבקבוק״ ״צוואר בעיית את מציגים אנחנו זאת, בתזה כראוי. ונחקרה הוסברה לא מעולם זו בעיה

אף מתקיימת זו שתופעה מראים זו, לתופעה חדש הסבר מציעים הגרפיות, הנוירונים רשתות של

באופן הבקבוק״ מ״צוואר נפגעות - גרפיות נוירונים רשתות של שונים סוגים וכי קיימים, במודלים

תוכניות, של שונים פופולריים ייצוגים אודות התמונה את ומשלימה אור שופכת זו תגלית שונה.

וחוזקותיהם. חולשותיהם

ii



תקציר

שינתה מלאכותיות, נוירונים רשתות על הנשענת העמוקה, הלמידה מהפכת האחרון, העשור במהלך

שפה ועיבוד דיבור, זיהוי ממוחשבת, ראייה כגון המחשב במדעי תחומים של רחב טווח היכר ללא

מה לציבור, הזמינים הפתוח הקוד ופרויקטי הקוד בסיסי מספר דרמטית גדל במקביל, טבעית.

תחום קוד, וכתיבת לתכנות הקשורות משימות של רחב במגוון נוירונים ברשתות השימוש את שאפשר

כאנלוגיה ,Programming Language Processing – PLP) תכנות״ שפות ״עיבוד מכנים שאנחנו

.(NLP – טבעית״ שפה ל״עיבוד

נותרה עמוקה למידה ובמערכות לומדים באלגוריתמים מחשב תוכניות של הייצוג בעיית זאת, עם

אף לתמונות. למשל, שיש, כמו ופשוט ישיר "מטריציוני" ייצוג אין לתוכניות כי ברור פתוחה. כשאלה

בשפה טקסט כמו תווים, של רצף או ״מילים״ של כרצף מיוצגת להיות יכולה מחשב שתוכנית פי על

לתחביר לציית חייבות שתוכניות מכיוון מטקסט-חופשי, מבניות יותר הרבה הן מחשב תוכניות טבעית,

מוגדרת סמנטיקה יש תכנות שפת לכל מזאת, יתרה חסר-הקשר. דקדוק ידי על המוגדר ועשיר נוקשה

עושות. הן ומה תקינות-דקדוקית תוכניות של פירושן מה המתארת מראש,

למידה ומערכות לומדים באלגוריתמים מחשב תוכניות ייצוג הבאה: הכללית בבעיה מתמקדת זו תזה

מאפשר וגם הקלט, מתוכניות הניתן ככל רב מידע תופס בעודו הלמידה, על שמקל באופן עמוקה

מייצגת אשר ,AST-ה מסלולי גישת את מציגה זו תזה האפשר. ככל כללי להשאר הלומד למודל

התוכנית. של (Abstract Syntax Tree – AST) המופשט התחביר בעץ מסלולים באמצעות תוכניות

קלי-משקל גם זאת עם אבל ומדויקים, חזקים נוירוניים מודלים לבנות מאפשר ,AST-ה מסלולי זה, ייצוג

המודלים את לאמן ניתן איך מראה זאת תזה ספציפית, מאסיבית. מידע כמות על לאימון וניתנים

תכונות חיזוי בודדים, תוכנית רכיבי של תכונות חיזוי הכוללות משימות עבור דוגמאות, מיליוני על הללו

קוד השלמות של והפקה נתון, קוד קטע מתוך טבעית בשפה משפט של חיזוי שלמים, קוד קטעי של

קוד- לצד אינטראקטיביות, הדגמות של אינטרנט כאתרי בפומבי פורסמו אלו מודלים אוטומטיות.

פופולריים הינם ,code2seq-ו code2vec כמו הללו, מהמודלים חלק ודאטא. מימושים של פתוח

ובתעשייה. באקדמיה נרחב בשימוש ונמצאים במיוחד,

המחקר ספציפית, תוכניות. של שונים ייצוגים בין התיאורטיים ההבדלים את חוקרת זאת תזה לבסוף,

פופולרי בייצוג הקיימות יותר רחבות אינהרנטיות מגבלות לגילוי הוביל בתוכניות כממוקד שהתחיל

בשלוש ביותר פופולריות נעשו הגרפיות הנוירונים רשתות . (GNN) הגרפיות הנוירונים רשתות אחר,

כגון כגרף, להצגה שניתן דאטא כל למעשה, שלהן. והרב-גוניות הכלליות עקב האחרונות, השנים

נוירונים רשת לתוך להזין בקלות ניתן - ומולקולה חברתית, רשת מחשב, תוכנית של התחביר עץ

לינארית תלוי הוא ואסימפטוטית מהיר, יחסית הוא גרפית נוירונים רשת של האימון זמן גרפית.

AST מסלולי על המבוססים המודלים את אמפירית השווינו כאשר הקשתות. ומספר הצמתים במספר
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