
Uri Alon, Meital Zilberstein, Omer Levy, Eran Yahav

code2vec:
Learning Distributed Representations of Code

Technion

Facebook AI
Research

P 𝜑
Trained
Model

Program Property

2

Predicting Properties of Programs

A Motivating Example: Semantic Labeling of Code

3

String[] _______(final String[] array) {

final String[] newArray = new String[array.length];

for (int index = 0; index < array.length; index++) {

newArray[array.length - index - 1] = array[index];

}

return newArray;

}

reverseArray

reverse

subArray

77.34%

18.18%

1.45%

P 𝜑
Trained
Model

𝑃1, 𝜑1
𝑃2, 𝜑2

…
𝑃𝑚, 𝜑𝑚

Training data
(millions of examples):

Program Property

𝑃′, ____Test data: 𝜑′

4

P 𝜑

𝑃1, 𝜑1
𝑃2, 𝜑2

…
𝑃𝑚, 𝜑𝑚

Training data
(millions of examples):

Program Property

Test data: 𝑃′, ____𝜑′

5

Code2vec: a neural network for predicting properties of code

6

Example application: predicting method names

7

String[] ______(...) {

final String[] = ...;

...

return newArray;

}

reverseArray

• A general approach – has many possible applications:

• Yes/no malware, required dependencies, keywords / hashtags, clone detection…

Code2vec: a neural network for predicting properties of code

How does code2vec work?

8

• Sequences of simple algebraic functions over vectors and matrices

9

a

good

talk

𝑤
avg.

⋅ sum()

• A simple example: Predict how positive is a given sentence (regression)

Score=
7.6

Truth=
9.4

𝑤 ← 𝑤 − 𝛼
𝜕𝑙𝑜𝑠𝑠

𝜕𝑤
𝑣𝑒𝑐 ← 𝑣𝑒𝑐 − 𝛼

𝜕𝑙𝑜𝑠𝑠

𝜕𝑣𝑒𝑐

Neural Networks

Loss(pred, truth)

Two main challenges in encoding programs:

1. How to decompose programs to smaller building blocks?
• Small enough to repeat across programs

• Large enough to be meaningful

2. How do we aggregate a set of these building blocks?

11

Back to our problem

the “bias-variance tradeoff”

Code2vec: High-level Overview

String[] _____(...) {

final String[] = ...;

...

return newArray;

}

Decompose Aggregate

12

Predict

𝜑

Challenge #1: Decomposing Programs
Requires expertise,
language-specific, task-
specific model

Implicitly re-learn syntactic &
semantic regularities

Sweet-spot

[“A General Path-based Representation for Predicting Program Properties”, PLDI’2018]
13

Training

data, time…

(done, SymbolRef ↑ UnaryPrefix! ↑ While ↓ If ↓ Assign= ↓ SymbolRef , done)

AST-paths

14

• AST paths capture some of the semantics, by using only the syntax.
• We represent a program as the set of all its paths.

while (!done) {
if (someCondition()) {

done = true;
}

}

while (!done) {
if (someCondition()) {

done = true;
}

}

[“A General Path-based Representation for Predicting Program Properties”, PLDI’2018]

A Program as a Set of AST Paths

𝑡𝑎𝑛ℎ

Representing AST-Paths as Vectors
Two sets of learned vectors:

• Token vectors

• Path vectors

15

(done, SymbolRef↑UnaryPrefix!↑While↓If↓Assign=↓SymbolRef , done)

lookup
(token vectors)

lookup
(token vectors)

lookup
(path vectors)

𝑤 =⋅

𝑓𝑢𝑙𝑙𝑦−𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝑙𝑎𝑦𝑒𝑟
𝑝𝑎𝑡ℎ_𝑐𝑜𝑛𝑡𝑒𝑥𝑡

▪ Input: an arbitrary-sized set of vectors
representing AST paths

▪ Select the “most important vector”

▪ Use all vectors, e.g., by averaging them

▪ Attention – a learned weighted average

16

Challenge #2: Aggregating a Set of Path-Contexts

Attention
Core idea - the values of the vectors learn two distinct goals:

1. The semantic meaning of the path-context
2. The amount of attention this path-context should get

𝑙𝑒𝑎𝑟𝑛𝑒𝑑
𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 𝑣𝑒𝑐𝑡𝑜𝑟

𝑝𝑎𝑡ℎ
𝑐𝑜𝑛𝑡𝑒𝑥𝑡𝑠

𝑑𝑜𝑡

0.6

0.3

0.1

𝑠𝑜𝑓𝑡𝑚𝑎𝑥
(𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒)

⋅
⋅

⋅
𝑠𝑢𝑚 𝑐𝑜𝑑𝑒 𝑣𝑒𝑐𝑡𝑜𝑟

A learned weighted average!

17

3.5

2.8

1.7

(token1, path, token2)

Bag of contexts

Code2vec Architecture

Predicting method names:

• Training set: ~14M examples

• Training time: <1 day (very fast) thanks to its simplicity

• End-to-end: the entire network is trained simultaneously

18

Program

Decompose Aggregate Predict

19

⇒ Attention provides interpretability!

20

21

⇒ Attention provides interpretability!

22

⇒ Attention provides interpretability!

The Vector Space of Target Labels
Cosine-similar vectors are learned for semantically similar labels.

23

The Vector Space of Target Labels
Cosine-similar vectors are learned for semantically similar labels.

24

http://code2vec.org

25

26

http://code2vec.org

27

http://code2vec.org

28

http://code2vec.org

29

Summary

• Core ideas in learning code snippets:

1. Representing a code snippet as a set of syntactic paths

2. Aggregate all paths using neural attention

• A simple and fast to train architecture

• Interpretable thanks to the attention mechanism

• The learned vectors capture interesting phenomena

30

http://code2vec.org

How many paths do you take from each code
snippet? Taking all paths is quadratic!
• An unlimited number!

• Since attention is simply a weighted average, it can handle an arbitrary
number of path-contexts.

• Empirically, we found that sampling 200 from each code example is sufficient.
~200 is also the average number of paths per example.

• This number (200) can be easily increased if the dataset contained especially
large pieces of code.

• Paths that are missed due to sampling are “covered” by other paths.

31

Why not performing additional control flow or
data flow analyses?
• These might help, but we are not sure they are necessary here. Most

of the important signals are expressed in the syntax.

• Our pure-syntactic approach has the advantage of generality – the
same approach can be easily applied to other languages.

• Semantic analysis is probably necessary in other tasks (for example,
when the programs are binaries).

32

How robust are the results for variable
renaming?
• As any machine learning model, confusing or adversarial

examples can mislead our model.

• Since the network was trained on “well-named” examples
from top-starred GitHub projects, it does perform worse
without names.

• We are exploring similar approaches for obfuscated code as
part of ongoing research.

33

Do you keep vectors for all paths and tokens?
• Almost all!

• Limiting to the most occurring 1M tokens, 1M paths, and 300k target labels.

• Each token and path vectors has 128 elements of 4 bytes (float32)
• Each target vector has 384 elements of 4 bytes
• Attention vector has 384 elements
• Fully connected layer is a matrix of size 384 × 384

• Total size: 128 ⋅ 4
𝑣𝑒𝑐𝑡𝑜𝑟

⋅ 1𝑀 + 1𝑀
𝑡𝑜𝑘𝑒𝑛+𝑝𝑎𝑡ℎ

𝑣𝑜𝑐𝑎𝑏
𝑠𝑖𝑧𝑒𝑠

+ 384 ⋅ 4
𝑣𝑒𝑐𝑡𝑜𝑟

⋅ 300𝑘
𝑡𝑎𝑟𝑔𝑒𝑡

𝑣𝑜𝑐𝑎𝑏 𝑠𝑖𝑧𝑒

+ ต384
𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛

+ 3842

𝑓𝑢𝑙𝑙𝑦−
𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑

≈ 𝟏. 𝟓 𝑮𝑩

• Standard GPU memory size: 𝟏𝟐 𝑮𝑩

34

Did you try Gated Graph NNs (Allamanis et al.,
ICLR’2018)?
• GGNNs were applied to a simpler task of Var-Misuse.

• Their code is not fully available.

• Two conceptual advantages of code2vec over GGNNs:
1. Much faster to train - thus practically easier to leverage huge

corpora (our dataset is orders of magnitude larger).
2. Our model is purely syntactic - the same algorithm can work for

every programming language. In GGNNs, the edges in the graph
are analyses like “ComputedFrom” and “LastWrite”, that need to
be re-implemented for different languages.

35

Can a non-neural model solve the same task?

• Yes, and pretty well (PLDI’2018).
• But not as good as a neural model.

• Main advantages of using a neural network:
1. Much better generalization (Section 5 in the paper)
2. Our neural network can produce a vector, which can be fed to a

variety of other (neural and non-neural) ML models and tasks.

36

