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RetoMaton - TL;DR: Automaton Trained LM

Given a trained LM and its training corpus, "'"J""'e'"'o* .
we construct a weighted finite-state ( Ge‘”ge"e
automaton. Barack
\ JO‘?““O AJdt;T
At inference time, we traverse the ( ., Donald T
automaton in parallel with the LM. Y. .J.cz.e...-O
States: clusters of training examples, T

: : , - encoded by the LM
We interpolate this automaton’s probability | g4qes: pointers between consecutive kd

with the base LM’s probability. examples, shared in cluster
Weights:  —||A", k|,
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K-nearest neighbor search: for every generated token
time (kNN search) >> time (forward pass)

If we performed ANN search to retrieve “Joe”,
can we save the search when predicting "Biden™?



Adding Pointers Between Datastore Entries

Training
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We still need to perform kNN search once, but in the
following time steps, we can just follow pointers instead!



Clustering Entries with Close Keys
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Clustering Entries with Close Keys

IS, — ® Biden,—
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Cluster such entries, and share their outgoing pointers

= Capture n-grams that were unseen at training time ® Robinette,—

= Longer pointer traversal, without backing up to kNN search



RetoMaton

Automaton Trained LM
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States: clusters of training examples,
encoded by the LM

Edges: pointers between consecutive
examples, shared in cluster
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Domain Adaptation
Train on WMT News Crawl; Test+build datastore on Law

106.56

Base LM Base LM - fine-tuned kNN-LM AdaptRet RetoMaton



RetoMaton

Synergy between a symbolic automaton and a neural LM

Saving pointers between training entries
of entries into automaton states

Dynamic transition scores

Lower perplexity than the base LM, while saving up to 83%

of the kNN searches compared to KNN-LM

The creation of the automaton is unsupervised
Constructed from the original training data

Another domain
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Please Visit our Joosmf session!

http://urialon.ml
ualon@cs.cmu.edu

https://github.com/neulab/retomaton

https://github.com/neulab/knn-transformers
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